EXPLICIT ELLIPTIC K3 SURFACES WITH RANK 15

JAAP TOP AND FRANK DE ZEEUW

ABSTRACT. This note presents a relatively straightforward proof of the fact that, under certain congruence conditions on $a,b,c\in \mathbf{Q}$, the group of rational points over $\overline{\mathbf{Q}}(t)$ on the elliptic curve given by

$$y^2 = x^3 + t^3(t^2 + at + b)^2(t + c)x + t^5(t^2 + at + b)^3$$

is trivial. This is used to show that a related elliptic curve yields a free abelian group of rank 15 as its group of $\overline{\mathbf{Q}}(t)$ -rational points.

1. Introduction. The theory of elliptic curves defined over the function field k(C) of a curve C/k is quite rich. To a large extent, this is due to the observation that any such elliptic curve E/k(C) corresponds to a minimal k-morphism $\pi: \mathcal{E} \to C$ in which \mathcal{E} is a smooth surface over k, and the generic fiber of π is isomorphic to E. Rational points on E correspond to sections of π , and the geometry of \mathcal{E} gives a better understanding of the Mordell-Weil group E(k(C)). An exposition of this theory is given in [7].

For example, when $\mathcal E$ is a rational surface and k is separably closed, one has the Shioda-Tate formula

$$\operatorname{rank} E(k(C)) = 8 - \sum_{\nu} (m_{\nu} - 1),$$

where m_{ν} is the number of irreducible components of the fiber $\pi^{-1}(\nu)$ over $\nu \in C$. Using the formula, it is easy to construct explicit examples with a given rank r satisfying $0 \le r \le 8$. This is done in the table below, at least over $\mathbf{C}(t)$.

Received by the editors on July 18, 2006, and in revised form on March 29, 2007.

DOI:10.1216/RMJ-2009-39-5-1689 Copyright ©2009 Rocky Mountain Mathematics Consortium