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NECESSARY A N D SUFFICIENT CONDITIONS 
FOR MULTIPARAMETER BIFURCATION 

JORGE IZE 

A B S T R A C T . Obstruction theory is used in order to give 
a complete characterization of linearized local and global 
bifurcation. In both cases there is a set of two topological 
invariants, depending only on the linear part, such that, if 
both are trivial, there is a nonlinear part with no local or 
global bifurcation. The nonvanishing of any of these invariants 
is sufficient for bifurcation for any nonlinearity. 

0. Introduction. A bifurcation problem is the study of the zeros 
of the nonlinear map /(A,z), where A belongs to the parameter space 
A, a; to a space E and /(A,x) has values in another space F near a 
known family of solutions (A,x(A)) called the trivial solutions. After 
linearization, one may assume that x(X) = 0 and that /(A,x) has the 
form 

(1) (A0-A(X))x-g(X,x) 

where A(0) = 0, g(X, x) = o( || x || ). It is well known that a necessary 
condition for bifurcation is that A is non-invertible and if A is a 
Fredholm operator one may write (1), near (0,0), as 

(A) - QA{\))(x2 -(I- KQA(X))-1KQ(A(X)x1 + g(X, x)) 

9 ( / - Q ) ( ^ ( A ) ( ( / - J R : Q A ( A ) ) - 1 X 1 

+ x2 - (J - KQA{X))-1KQ{A(X)x1 + g(X, x)) 

+ (I-A(X)KQ)-1g(X,x)), 

where x = xi®x<2,xi in ker Ao, Q is a projection on Range AQ and K 
is the pseudo-inverse of AQ from Range AQ into X2, the complement 
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