ORLICZ SPACES WHICH ARE RIESZ ISOMORPHIC TO ℓ^{∞}

WITOLD WNUK

ABSTRACT. The main purpose of this paper is to describe, in terms of the function φ and the measure μ , Orlicz spaces $L^{\varphi}(S, \sum, \mu)$ which are Riesz isomorphic to ℓ^{∞} . The "thickness", in the sense of Baire category, of the subset of measures for which $L^{\varphi}(S, \sum, \mu)$ is Riesz isomorphic to ℓ^{∞} is also investigated.

I. Basic notation and auxiliary results. Throughout the note, in what concerns Riesz spaces (= vector lattices) we use the terminology of [2]. When two Riesz spaces L and K are Riesz isomorphic, then this fact will be noted by $L \simeq K$. The symbols \mathbf{R}^{S} and N are reserved for the space of functions from a set S into \mathbf{R} with the standard pointwise order and for the set of positive integers, respectively. Moreover, e_s denotes the characteristic function of the set $\{s\}, L_+$ is the cone of positive elements of a Riesz space L and $\ell_0^{\infty}(S)$ is the ideal in $\ell^{\infty}(S)$ consisting of functions with at most countable support. When S is countable then, of course, $\ell_0^{\infty}(S) = \ell^{\infty}(S)$.

We start with two simple lemmas.

LEMMA 1. Let $L_i(i = 1, 2)$ be Riesz subspaces of \mathbb{R}^S containing all $e'_s s$. If $T: L_1 \to L_2$ is a Riesz isomorphism onto, then there exists a function $g \in \mathbf{R}^{S}_{+}$ and a bijection $\alpha : S \to S$ such that

$$T(x)(s) = g(s)x(\alpha(s))$$

for all $x \in L_1$.

The above statement follows immediately from two facts: $T(e_s)$ is an atom in L_2 (so it has the form $a_s e_{s'}$) and T is a normal Riesz homomorphism.

The next Lemma will be frequently used.

LEMMA 2. Let L be a Riesz subspace of \mathbf{R}^{S} containing all $e'_{s}s$, and let A be a subset of S. If L is Riesz isomorphic to $\ell_0^{\infty}(S)$, then

Received by the editors on March 18, 1986.

Copyright ©1988 Rocky Mountain Mathematics Consortium