PIECEWISE-RATIONAL RETRACTIONS ONTO CLOSED, CONVEX, SEMI-ALGEBRAIC SETS WITH INTERIOR-SYNOPSIS

CHARLES N. DELZELL

Dedicated to the memory of Gus Efroymson

Let (K, <) be an ordered field, contained in a real closed order-extension field R. Let $X = (X_1, \ldots, X_n)$ be indeterminates and let $x = (x_1, \ldots, x_n) \in$ R^n . A set $A \subseteq R^n$ is called semi-algebraic (abbreviated s.a.: more precisely, K-R-s.a.) if it is a finite union of finite intersections of sets (and of complements of sets) of the form $\{x \in R^n | f(x) > 0\}$, $f \in K[X]$. Similarly for subsets of R^m , $m \neq n$. If $A \subseteq R^n$ and $B \subseteq R^m$ are s.a., and if L is a subfield of R, then a function $f: A \to B$ will be called an L-function if f takes points of A with coordinates in L ("L-rational points") to points of B with coordinates in L; i.e., if $f(A \cap L^n) \subseteq L^m$.

DEFINITION. We shall call a function $f = (f_1, \ldots, f_m)$, from a (K-R) s.a. set A in \mathbb{R}^n to a (K-R-) s.a. set in \mathbb{R}^m , (K-R-) piecewise-rational, abbreviated (K-R-) p.r., if we can decompose A into a finite number of (K-R-) s.a. sets W_i , $A = \bigcup_i W_i$, such that for each i and for $1 \leq j \leq m$, there is a rational function in K(X) which agrees with f_j on W_i .

The absolute value function $x \mapsto |x|$ is a good example of a (continuous) Q-R-p.r. function from R^1 to R^1 . Of course, all rational functions are also p.r. Clearly, K-R-p.r. functions are L-functions, uniformly for all fields L between K and R (i.e., for $K \subseteq L \subseteq R$).

DEFINITION. A K-R-s.a. set S is a K-R-p.r.-neighborhood-retract if there exists an open K-R-s.a. neighborhood $U \supseteq S$ and a retraction r: $U \rightarrow S$ which is K-R-p.r.

We may as well require U to be regular (i.e., equal to the interior of its closure), since we can shrink it if necessary until it is regular, by triangulating U and S and subdividing.

Recall that an ordered field K is called Archimedean (over Q) if for all $d \in K$ there exists $e \in Q$ such that d < e (e.g., Q and R are Archimedean). We can now state the main theorem.

RETRACTION THEOREM. Let K be Archimedean. Let $W \subseteq R^n$ be a closed,