SPACES FORMED BY SPECIAL ATOMS, I

GERALDO SOARES DE SOUZA*

"Dedicated to Ismenia Sales de Souza, my wife"

1. Introduction. C. Fefferman and E. M. Stein [3] and R. R. Coifman [1] observed that a real-valued function f in $L_1(T)$, (where T is the perimeter of the unit disk in the complex plane) is the real part of a boundary function $F \in H^1(\mathbf{D})$ ($F \in H^1(\mathbf{D})$ if and only if $\|F\|_{H^1} = \sup_{r < 1} \int_T |F(re^{i\theta})| d\theta < \infty$, where $\mathbf{D} = \{z \in C; |z| < 1\}$) if and only if there is a sequence (a_n) , of atoms and a sequence (c_n) , of numbers, such that $\sum_{n=1}^{\infty} |c_n| < \infty$ and $f(t) = \sum_{n=1}^{\infty} c_n a_n(t)$. (A real valued function defined on T is called an atom whenever a is supported on an interval $I \subset T$, $|a(t)| \le |I|^{-1}$ and $\int_I a(t) dt = 0$.) Moreover, letting $\lambda(f)$ equal the infimum of $\sum_{n=1}^{\infty} |c_n|$ over all such representations of f, there exist absolute constants M and N such that $M \|F\|_{H^1} \le \lambda(f) \le N \|F\|_{H^1}$; we shall denote the set of all such f as ReH^1 and $\|f\|_{ReH^1} = \lambda(f)$.

 ReH^1 is well known as the atomic decomposition of $H^1(\mathbf{D})$. C. Fefferman and E. M. Stein in their famous paper [3], proved that the dual of ReH^1 is the space $BMO = \{f \in L_1(T); \|f\|_{BMO} = \sup_{I \subset T} (1/|I|) \int_I |f(t) - f_I| dt < \infty \}$ where $f_I = (1/|I|) \int_I f(t) dt$, originally introduced by F. John and L. Nirenberg [4]. BMO stands for bounded mean oscillation and I is an interval.

In this paper we introduce a new function space B defined by $B = \{f: T \to \mathbf{R}, f(t) = \sum_{n=1}^{\infty} c_n b_n(t): \sum_{n=1}^{\infty} |c_n| < \infty \}$. Each b_n is a special atom, that is, a real-valued function b, defined on T, which is either $b(t) \equiv 1/2\pi$ or $b(t) = -(1/|I|)\chi_R(t) + (1/|I|)\chi_L(t)$, where I is an interval on T, L is the left half of I and R is the right half. |I| denotes the length of I and χ_E the characteristic function of E. B is endowed with the norm $||f||_B = \inf \sum_{n=1}^{\infty} |c_n|$, where the infimum is taken over all representations of f, which becomes a Banach space. At this point, a natural question is: Is R topologically equivalent to ReH^{1} ? In other words, do there exist positive constants R and R such that R and R such that R is R and R in the R in other words, do there exist positive constants R and R such that R is function of R in the R in R in

^{*}Some ideas in this paper were created while the author was partially supported by CNP_{σ} . Brazilian Research Council as a Ph. D. student.

Received by the editors on March 25, 1982.