SPACES FORMED BY SPECIAL ATOMS, I

GERALDO SOARES DE SOUZA*

"Dedicated to Ismenia Sales de Souza, my wife"

1. Introduction. C. Fefferman and E. M. Stein [3] and R. R. Coifman [1] observed that a real-valued function f in $L_{1}(T)$, (where T is the perimeter of the unit disk in the complex plane) is the real part of a boundary function $F \in H^{1}(\mathbf{D})\left(F \in H^{1}(\mathbf{D})\right.$ if and only if $\|F\|_{H^{1}}=\operatorname{Sup}_{r<1} \int_{T}\left|F\left(r e^{i \theta}\right)\right| d \theta<$ ∞, where $\mathbf{D}=\{z \in C ;|z|<1\})$ if and only if there is a sequence $\left(a_{n}\right)$, of atoms and a sequence $\left(c_{n}\right)$, of numbers, such that $\sum_{n=1}^{\infty}\left|c_{n}\right|<\infty$ and $f(t)=\sum_{n=1}^{\infty} c_{n} a_{n}(t)$. (A real valued function defined on T is called an atom whenever a is supported on an interval $I \subset T,|a(t)| \leqq|I|^{-1}$ and $\int_{I} a(t) d t=0$.) Moreover, letting $\lambda(f)$ equal the infimum of $\sum_{n=1}^{\infty}\left|c_{n}\right|$ over all such representations of f, there exist absolute constants M and N such that $M\|F\|_{H^{1}} \leqq \lambda(f) \leqq N\|F\|_{H^{1}}$; we shall denote the set of all such f as $R e H^{1}$ and $\|f\|_{R e H^{1}}=\lambda(f)$.
$R e H^{1}$ is well known as the atomic decomposition of $H^{1}(\mathbf{D})$. C. Fefferman and E. M. Stein in their famous paper [3], proved that the dual of $R e H^{1}$ is the space $B M O=\left\{f \in L_{1}(T) ;\|f\|_{B M O}=\operatorname{Sup}_{I \subset T}(1 /|I|) \int_{I}\left|f(t)-f_{I}\right| d t<\right.$ $\infty\}$ where $f_{I}=(1 /|I|) \int_{I} f(t) d t$, originally introduced by F. John and L. Nirenberg [4]. BMO stands for bounded mean oscillation and I is an interval.

In this paper we introduce a new function space B defined by $B=$ $\left\{f: T \rightarrow \mathbf{R}, f(t)=\sum_{n=1}^{\infty} c_{n} b_{n}(t) ; \sum_{n=1}^{\infty}\left|c_{n}\right|<\infty\right\}$. Each b_{n} is a special atom, that is, a real-valued function b, defined on T, which is either $b(t) \equiv 1 / 2 \pi$ or $b(t)=-(1 /|I|) \chi_{R}(t)+(1 /|I|) \chi_{L}(t)$, where I is an interval on T, L is the left half of I and R is the right half. $|I|$ denotes the length of I and χ_{E} the characteristic function of $E . B$ is endowed with the norm $\|f\|_{B}=\operatorname{Inf} \sum_{n=1}^{\infty}\left|c_{n}\right|$, where the infimum is taken over all representations of f, which becomes a Banach space. At this point, a natural question is: Is B topologically equivalent to $R e H^{1}$? In other words, do there exist positive constants C and D such that $C\|f\|_{B} \leqq \lambda(f) \leqq D\|f\|_{B}$? Regarding

[^0]
[^0]: *Some ideas in this paper were created while the author was partially supported by CNP_{q}. Brazilian Research Council as a Ph. D. student.

 Received by the editors on March 25, 1982.
 Copyright © 1984 Rocky Mountain Mathematics Consortium

