HOLOMORPHIC FUNCTIONS COMMUTING WITH ABSOLUTE VALUES

JOHN P. D'ANGELO

Introduction. It is often possble in complex analysis to derive very strong conclusions about holomorphic functions from apparently weak information. Suppose, for example, that f is holomorphic in a disk centered at 0 in the complex plane, and that f commutes with absolute values in the sense that

(1)
$$f(|z|) = |f(z)|$$

One can then conclude that

(2) $f(z) = cz^m$, where $c \ge 0$, and m is a non-negative integer.

A proof of this exercise usually relies on a power series expansion for f. In this note we extend this result in two directions. First of all, we observe that if Ω is a simply connected domain, not containing 0, and such that (1) makes sense for all z in Ω , then we can conclude that

(3)
$$f(z) = cz^{\alpha}$$
 where $c \ge 0$, and α is an arbitrary real number.

Secondly, if Ω is a domain in \mathbb{C}^n for which real powers of z are holomorphic, and $|z| = (|z_1|, |z_2|, \ldots, |z_n|)$, we can still conclude that (3) holds, except α is then an arbitrary real multi-index.

Our proof relies on the polar form of the Cauchy-Riemann equations, and integration of some real ordinary differential equations.

Statement and proof of the result. Let Ω be an open domain in \mathbb{C}^n . We say Ω is *R*-like if whenever *z* lies in Ω , so does |z|, Here $|z| = (|z_1|, |z_2|, \ldots, |z_n|)$. We say Ω is *L*-like if the functions $g(z) = \log(z_j)$ are all holomorphic on Ω . In particular this implies that Ω does not intersect any of the coordinate axes. Furthermore, if Ω is *L*-like, the function $g(z) = z^{\alpha}$ is holomorphic for any real multi-index α . Note that both concepts, *L*-like and *R*-like, are not preserved under general holomorphic changes of coordinates, because the origin and the notion of absolute value must remain invariant.

We recall that f is holomorphic on Ω if any only if f is continuously dif-

Received by the editors on June 10, 1980.