ASYMPTOTIC STABILITY OF A COUPLED DIFFUSION SYSTEM ARISING FROM GAS-LIQUID REACTIONS

C.V. PAO

Abstract

This paper is concerned with the asymptotic behavior of the time dependent solution in relation to the corresponding steady-state solution for a nonlinear coupled reaction-diffusion system arising from gas-liquid absorption. Existence and uniqueness of both time-dependent and steady-state solutions are discussed, and various boundary conditions are included in the discussion. It is shown in the case of a homogeneous system that for any non-negative initial function the time dependent solution converges exponentially to zero as $t \rightarrow \infty$ when the boundary condition is of either Dirichlet or mixed type. However, for Neumann type boundary condition, multiple constant steady-state solutions exist and the time-dependent solution may converge to any one of these steady-states. Depending on the relative magnitude between the initial functions, convergence of the time-dependent solution to one of these constant states is explicitly given. For a nonhomogeneous system with nonzero boundary or internal data the convergence of the time-dependent solutions also depends on the relative magnitude between the components of the steadystate solution. A characterization of the stability and instability of a steady-state solution is established, and in the case of stability an estimate of the stability region is given.

1. Introduction. In the theory of a gas-liquid diffusion reaction system in a p-dimensional medium Ω the concentration of the dissolved gas $u=u(t, x)$ and the reactant $v=v(t, x)$ are governed by the coupled reaction-diffusion equations (cf. [2-4, 6, 12])

$$
\begin{align*}
& u_{t}-D_{1} \Delta u=-k_{1} u v \\
& v_{t}-D_{2} \Delta v=-k_{2} u v \tag{1.0}
\end{align*} \quad(t>0, x \in \Omega)
$$

where Δ is the Laplacian operator, D_{1}, D_{2} are the diffusion coefficients, k_{1}, k_{2} are the reaction rate constants and $r_{i}=-k_{i} u v$ represent the rate of reactions. A more general reaction rate is given by

$$
r_{1}(u, v)=-k_{1} u^{m} v^{m^{\prime}}, \quad r_{2}(u, v)=-k_{2} u^{n} v^{n^{\prime}}
$$

and is called the (m, n)th order reaction (cf. [4]). Motivated by the above

