BANACH SPACES WHICH ARE NEARLY UNIFORMLY CONVEX

R. HUFF

ABSTRACT. A property which generalizes uniform convexity is defined in terms of sequences. Its relationships to uniform convexity and to weak and norm convergence on spheres are investigated.

1. Introduction. Let X be a (real) banach space with norm $\|\cdot\|$, let $B_{\delta}(x)$ (respectively, $\overline{B}_{\delta}(x)$) denote the open (closed) ball with center x and radius δ , and let co(A) ($\overline{co}(A)$) denote the convex hull (closed convex hull) of a set A.

We will say that the norm is a *Kadec-Klee* (KK-)*norm* provided on the unit sphere sequences converge in norm whenever they converge weakly. (This is property (H) in [2].) An equivalent formulation is the following.

$$(\mathbf{K}\mathbf{K})_{n=1}^{\infty} \subset \overline{B}_{1}(0)$$

$$(\mathbf{K}\mathbf{K}): x_{n} \to x \text{ wkly}$$

$$(x_{n})_{n=1}^{\infty} \text{ not norm Cauchy} \end{cases} \Rightarrow ||x|| < 1.$$

For notation, given a sequence (x_n) we let

$$sep(x_n) = inf \{ ||x_n - x_m|| : m \neq n \}.$$

If (x_n) is not norm-Cauchy, then for some subsequence (y_n) we must have $sep(y_n) > 0$. The above definition can be reformulated as follows.

$$(\mathbf{K}\mathbf{K}): \begin{array}{l} (x_n) \subset \bar{B}_1(0) \\ (\mathbf{K}\mathbf{K}): \begin{array}{l} x_n \to x \text{ wkly} \\ \operatorname{sep}(x_n) > 0 \end{array} \right\} \Rightarrow ||x|| < 1.$$

This formulation suggests the following two successively stronger notions.

The norm will be called *uniformly Kadec-Klee* (UKK) if for every $\varepsilon > 0$ there exists $\delta < 1$ such that

$$(\mathbf{X}_n) \subset B_1(0)$$

(UKK): $x_n \to x$ wkly
 $\operatorname{sep}(x_n) \geq \varepsilon$ $\Rightarrow x \in B_{\delta}(0).$

Copyright © 1980 Rocky Mountain Mathematics Consortium

Presented to the American Mathematical Society January, 1979, Biloxi, Mississippi. Received by the editors on April 2, 1979.