A T_B SPACE WHICH IS NOT KATETOV T_B

WILLIAM G. FLEISSNER

In 1943, E. Hewitt [1] proved the beautiful theorem that a compact Hausdorff space is minimal Hausdorff and maximal compact. Restating this result in more detail, if (X, τ) is a compact Hausdorff space and (X, τ') and (X, τ'') are spaces $\tau' \subsetneq \tau \subsetneq \tau''$, then (X, τ') is not Hausdorff, and (X, τ'') is not compact. The converses to this theorem are appealing but false. There are noncompact minmal Hausdorff spaces [2] and non Hausdorff maximal compact spaces [2].

A compact space is maximal compact if every compact set is closed [3]. Let us call spaces in which all compact sets are closed T_B spaces, as this notion can be thought of as a separation axiom between T_1 and T_2 . They are also called *KC* spaces. R. Larson [4] asked whether a space is maximal compact iff it is minimal T_B . A related question is whether every T_B topology is Katetov T_B , that is whether every T_B topology contains a minimal T_B topology. The author wishes to thank Douglas Cameron for bringing these questions to his attention. In this paper we construct a T_B not Katetov T_B tpace.

The point set of all spaces in this paper will be the countable ordinals. To avoid ambiguity, we will refer to the first uncountable ordinal (and cardinal) as ω_1 , and to the point set of the spaces as Ω . A typical point of Ω will be x_{α} , where $\alpha < \omega_1$. The point set $\{x_{\beta} : \beta < \alpha\}$ will be called $P(\alpha)$, the predecessors of α ; and the point set $\{x_{\beta} : \beta > \alpha\}$ will be called $S(\alpha)$, the successors of α . The usual topology on Ω , generated by $\{P(\alpha) : \alpha < \omega_1\}$ $\bigcup \{S(\alpha) : \alpha < \omega_1\}$ will be called ". The cardinality of a set S will be denoted |S|.

LEMMA 1. If $\tau' \subset \tau$ and K is τ compact, K is τ' compact.

LEMMA 2. A compact T_B space is a minimal T_B space.

If $S \subset \Omega$, we denote the subspace of (Ω, τ) with point set S by $(S, \tau|S)$. Equivalently, $\tau|S = \{U \cap S : U \in \tau\}$. We say that τ, τ' agree on countable sets if for all $S \subset \Omega$ with $|S| \leq \omega$,

$$(S, \tau | S) = (S, \tau' | S).$$

LEMMA 3. Suppose $\tau \subset \#$ and (Ω, τ) is T_B . Then $\tau, \#$ agree on countable sets.

Received by the editors on July 29, 1977.

Copyright © 1980 Rocky Mountain Mathematics Consortium