COMPOSITION OPERATORS ON A SPACE OF LIPSCHITZ FUNCTIONS

RAYMOND C. ROAN

ABSTRACT. For $0 < \alpha \leq 1$, let $\operatorname{Lip}(\alpha)$ denote the space of functions f which are analytic on the open unit disk, continuous on the closed unit disk, and whose boundary values satisfy a Lipschitz condition of order $\alpha : |f(z) - f(w)| \leq K|z - w|^{\alpha}$, for |z| = |w| = 1. For $0 < \alpha < 1$, let $\operatorname{lip}(\alpha)$ denote the space of functions f in $\operatorname{Lip}(\alpha)$ such that $|f(z) - f(w)| = o(|z - w|^{\alpha})$, as $w \to z$, |z| = |w| = 1. We prove that a function φ in $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$), with $|\varphi(z)| \leq 1$ for $|z| \leq 1$, induces a composition operator on $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$) if and only if there exists a finite number M and a number r < 1 such that $|\varphi(z)| \geq r$ implies $|\varphi'(z)| \leq M$. We also prove that a composition operator C_{φ} on either $\operatorname{Lip}(\alpha)$ or $\operatorname{lip}(\alpha)$ is compact if and only if for each $\epsilon > 0$ there exists an r < 1 such that $|\varphi(z)| \geq r$ implies $|\varphi'(z)| \leq \epsilon$.

1. Introduction. We shall denote the unit disk $\{|z| < 1\}$ by U. For $0 < \alpha \leq 1$, we let $\text{Lip}(\alpha)$ denote the space of functions f which are analytic in U, continuous on U⁻ (the closure of U), and whose boundary values satisfy a Lipschitz condition of order α :

$$\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = o(1), \qquad |z| = |w| = 1.$$

For $0 < \alpha < 1$, we let $lip(\alpha)$ denote those functions f in $Lip(\alpha)$ for which

$$\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = o(1) \quad \text{as } w \to z, \ |z| = |w| = 1$$

Each of the spaces $Lip(\alpha)$ and $lip(\alpha)$ is a Banach algebra when the norm of an element is defined as

$$\||f\|_{lpha} = \||f||_{\infty} + \sup_{\substack{z+w \ |z|=|w|=1}} \frac{|f(z) - f(w)|}{|z - w|^{lpha}},$$

where $||f||_{\infty} = \sup |f(z)| \ (|z| < 1).$

Copyright

1980 Rocky Mountain Mathematical Consortium

Received by the editors on October 31, 1977, and in revised form on February 22, 1978.

AMS (MOS) Subject Classification (1970). Primary 46E15, 46J15; Secondary 30A98, 47B05.