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CANTOR SETS IN 3-MANIFOLDS1

DAVID G. WRIGHT

1. Introduction. We answer the following 3-dimensional questions
posed by Bing and Daverman which show that wild Cantor sets in 3-
manifolds behave essentially like a 1-dimensional polyhedron. Further-
more, any compactum in the interior of a 3-manifold can be approx-
imated by a Cantor set. The questions below are unsolved for n > 3;
however, some partial solutions are known and pointed out.

QUESTION 1.1 (BING). [4, Question 1, p. 17]. What are necessary and
sufficient conditions on an n-manifold Mn without boundary in order
that it have the property that each Cantor set in Mn lies in an open n-
cell in Mn?

If we stipulate that the Mn in Ring's question is closed, then an an-
swer to Bing's question is: Mn is homeomorphic to the n-sphere for
n = 3 [8] and n > 4 [13].

DEFINITION 1.1. A compactum K in an n-manifold Mn is said to be
approximable by Cantor sets if for each neighborhood U of K there ex-
ists a Cantor set C in U such that a loop y in Mn — U is inessential in
Mn — K if and only if y is inessential in Mn — C. We say that the Can-
tor set C approximates K with respect to U.

QUESTION 1.2 (DAVERMAN). Is every compactum in the interior of an
n-manifold approximable by Cantor sets?

Recent work of Daverman and Edwards [7] has shown that the an-
swer to Question 1.2 is affirmative if K is a closed, flat, PL (n — 2)-di-
mensional manifold.

I would like to express my indebtedness to the friendship and instruc-
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helpful discussion.

2. Approximating compacta by Cantor sets.

LEMMA 2.1. Suppose P is a polyhedral finite graph in the interior of a
3-manifold M. Then P is approximable by Cantor sets.
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