## CANTOR SETS IN 3-MANIFOLDS ${ }^{1}$

## DAVID G. WRIGHT

1. Introduction. We answer the following 3-dimensional questions posed by Bing and Daverman which show that wild Cantor sets in 3manifolds behave essentially like a 1-dimensional polyhedron. Furthermore, any compactum in the interior of a 3 -manifold can be approximated by a Cantor set. The questions below are unsolved for $n>3$; however, some partial solutions are known and pointed out.

Question 1.1 (Bing). [4, Question 1, p. 17]. What are necessary and sufficient conditions on an $n$-manifold $M^{n}$ without boundary in order that it have the property that each Cantor set in $M^{n}$ lies in an open $n$ cell in $M^{n}$ ?

If we stipulate that the $M^{n}$ in Bing's question is closed, then an answer to Bing's question is: $M^{n}$ is homeomorphic to the $n$-sphere for $n=3$ [8] and $n>4$ [13].

Definition 1.1. A compactum $K$ in an $n$-manifold $M^{n}$ is said to be approximable by Cantor sets if for each neighborhood $U$ of $K$ there exists a Cantor set $C$ in $U$ such that a loop $\gamma$ in $M^{n}-U$ is inessential in $M^{n}-K$ if and only if $\gamma$ is inessential in $M^{n}-C$. We say that the Cantor set $C$ approximates $K$ with respect to $U$.

Question 1.2 (Daverman). Is every compactum in the interior of an $n$-manifold approximable by Cantor sets?

Recent work of Daverman and Edwards [7] has shown that the answer to Question 1.2 is affirmative if $K$ is a closed, flat, PL ( $n-2$ )-dimensional manifold.

I would like to express my indebtedness to the friendship and instruction of J. W. Cannon. I would also like to thank R. J. Daverman for a helpful discussion.

## 2. Approximating compacta by Cantor sets.

Lemma 2.1. Suppose $P$ is a polyhedral finite graph in the interior of a 3-manifold M. Then $P$ is approximable by Cantor sets.

[^0]
[^0]:    Received by the editors on August 10, 1976, and in revised form on March 10, 1977.
    ${ }^{1}$ Some of this work is found in the author's doctoral thesis under Professor J. W. Cannon at the University of Wisconsin, Madison.

    Copyright © 1979 Rocky Mountain Mathematical Consortium

