BEZIER-CURVES WITH CURVATURE AND TORSION CONTINUITY

HANS HAGEN

Abstract

One of the main problems in computer-aided design is how to input shape information to the computer. In the analytic description and approximation of arbitrary shaped curves the Be-zier-curves are of great importance (see [5]). A Bezier-curve is a segmented curve. The segments $x_{l}(u):=\sum_{m}^{i=0} b_{m \iota+i} \cdot B_{i}^{m}\left(u-u_{l}\right)$ $u_{\ell+1}-u_{\ell}$) of a Bezier-curve of degree m over the parameter interval $u_{\iota} \leqq u \leqq u_{\iota+1}$ use the Bernstein-polynomials as blending functions. The coefficients $b_{m \iota+i}$ are called Bezier points. They form the so called Bezier polygon, which implies the Bezier-curve. A.R. Forrest analyzed the Bezier techniques in [4] and extended these techniques to generalized blending functions. W. J. Gordon and R. F. Riesenfeld provided in [5] an alternative development in which the Bezier methods emerge as an application of the Bernstein polynomial approximation operator to vectorvalued functions.

As connecting conditions between the curve-segments are always chosen the so called $C^{2}-$ or C^{3} - continuity. (A segmented curve is said to have $C^{(k)}$-continuity if an only if $X^{(k)}\left(t_{i}^{+}\right)=X^{(k)}\left(t_{i}^{-}\right)$at the connecting points $t_{i} ; i=1, \ldots, n$, where $\left.X^{(k)}:=\left(\partial / \partial t^{k}\right) X ; k \in N.\right)$

In this paper we create, after a brief survey of the fundamentals of differential geometry, a tangent, a curvature, and a torsion continuity, using the geometric invariants of a curve.

Considering $C^{2}-\left(C^{3}-\right)$ continuity, we have only one choice for $b_{m(\iota+1)+2}\left(b_{m(\iota+1)+3}\right), 0=/ \leqq k$. In the third part of this paper we show that curvature continuity offers a "straight line of alternatives" and torsion continuity offers a "plane of alternatives."

We give also constructions for the Bezier polygons of Bezier curves with curvature - and torsion - continuity, which are convenient for a graphic terminal.

1. Fundamentals of differential geometry.

Definition 1.1. (a) A parametrized C^{r}-curve is a C^{r}-differentiable map $X: I \rightarrow E^{n}$ of an open interval I of the real line R into the euclidean space E^{n}.
(b) A parametrized C^{r}-curve $X: I \rightarrow E^{n}$ is said to be regular if $\dot{X}(t) \neq 0$, for all $t \in I$, where $\dot{X}=\partial / \partial t X$.

Received by the editors on November 13, 1983 and in revised form on January 11, 1985.

