MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVIII, Mathematics No. 1, 1953.

On the Evaluation of the Derivatives of Solutions of y'' = f(x, y, y').

By

Taro YOSHIZAWA

(Received March 30, 1953)

1. Theorem. The principal part of the possibility of the prolongation of solutions of the ordinary differential equation of the second order,

(1)
$$\frac{d^2y}{dx^2} = f\left(x, y, \frac{dy}{dx}\right),$$

is on the evaluation of the derivatives of the solutions. On this subject Prof. Nagumo has given a sufficient condition in Proc. Physico-Math. Soc. of Japan, 3rd Series. Vol. 19 (1937), and the late Prof. Okamura has obtained a more general and easier result in Functional Equations (in Japanese), Vol. 27, but it is also a sufficient condition.

Recently we have obtained a necessary and sufficient condition for the evaluation, by aid of the *D*-function having the properties like the distance has which Okamura had utilized in his research of necessary and sufficient conditions for the uniqueness of solutions in the Cauchy-problem.

Our theorem runs as follows.

Let \mathcal{L} be a bounded closed domain in xy-plane and \mathcal{L}^* be a three dimensional domain of (x, y, y'), where $(x, y) \in \mathcal{L}$ and $-\infty$ $\langle y' \langle +\infty \rangle$. Let f(x, y, y') be defined and continuous in \mathcal{L}^* . In order that, given a positive number a and for a suitable positive number $\beta(a)$ (>a), if for any solution y=y(x) of (1) through a point (x_0, y_0) arbitrary in \mathcal{L} , provided $|y'(x_0)| \leq a$, we have

$$|y'(x)| < \beta(a),$$

so long as y=y(x) lies in \pounds for $x_0 \leq x$, it is necessary and sufficient that there exist two non-negative continuous functions $\varphi_i(x, y, y')$ (i=1,2) as follows; namely $\varphi_1(x, y, y')$ and $\varphi_2(x, y, y')$ are defined in