Unique factorization of ideals in the sense of quasi-equality

To Professor Y. Akizuki for celebration of his 60th birthday

By

Toshio NISHIMURA

(Communicated by Prof. Nagata, Aug. 20, 1963)

Introduction

Throughout this paper, let R be an integral domain, i.e., a commutative ring with an identity and having no proper zero-divisors, and let K be the field of quotients of R. By an R-module, we shall mean in this paper an R-module contained in K. Let A and B be R-modules, then the set of all elements x in K such that xbis in A for every element b of B is denoted by A/B. In the special case that A=R, R/B is often denoted by B^{-1} , and we write $(B^{-1})^n$ by B^{-n} , for brevity. By an ideal of R, we mean a non-zero fractional ideal of R. If $A\subseteq R$, then we say that A is an integral ideal of R. If $(A^{-1})^{-1}=A$, then we say that A is a V-ideal of R. If $(A^{-1})^{-1}=A$ and $AA^{-1}=A$, then we say that A is an *F*-ideal of R. It is known (cf. Mori [1]) that an F-ideal is an integral ideal and is characterized by the properties that (1) A^{-1} is a ring containing R and (2) A is a V-ideal. If $A^{-1}=B^{-1}$, then we say that A is quasi-equal to B and write $A \sim B$.

In this paper we shall prove the following theorem.

Theorem. The following three conditions are equivalent to each other :

(1) Any ideal A of R satisfies a quasi-equality of the following type:

$$A \sim \mathfrak{p}_1^{r_1} \mathfrak{p}_{2^2}^{r_2} \cdots \mathfrak{p}_{n^n}^{r_n},$$

where \mathfrak{p}_i $(i=1, 2, \dots, n)$ are prime ideals in R and r_i $(i=1, 2, \dots, n)$