A note on transitive permutation groups of degree p=2q+1, p and q being prime numbers

To Professor Y. Akizuki on the occasion of his 60th birthday

By

Noboru Ito

(Communicated by Prof. Nagata, Aug. 19, 1963)

1. Let $p \ge 5$ be a prime number and let Ω be the set of symbols $1, \dots, p$. Let \mathfrak{G} be a nonsolvable transitive permutation group on Ω . Let $p_0(\mathfrak{G})$ be the number of irreducible characters of \mathfrak{G} whose degrees are divisible by p. It seems to be little known about the number $p_0(\mathfrak{G})$. In (9) it is shown that $p_0(\mathfrak{G}) > 0$. There exist a few groups with $p_0(\mathfrak{G}) = 1$; namely, $LF_2(l)$ as a permutation group of degree l (l = 5, 7, 11), where $LF_2(l)$ denotes the linear fractional group over the field of 1 elements ((2), p. 286). In the present note, under the special condition that $\frac{1}{2}(p-1) = q$ is also a prime, we show that the converse of this fact holds; namely, we prove the following

Theorem. Let $q = \frac{1}{2}(p-1)$ be also a prime. If $p_0(\mathfrak{G}) = 1$, then p = 5, 7, 11 and \mathfrak{G} is isomorphic to $LF_2(p)$.

2. Throughout this section we assume that $q=\frac{1}{2}(p-1)$ is a prime. Then in (6), (7) and (8) we studied the structure of $\mathfrak G$ to some extent. In particular, we proved that such a group $\mathfrak G$ is triply transitive on Ω with the exception of LF_2 (7) and LF_2 (11). Now let us consider two irreducible characters $X_0(X)=\frac{1}{2}(\alpha(X)-1)$ ($\alpha(X)-2)-\beta(X)$ and $X_{00}(X)=\frac{1}{2}\alpha(X)(\alpha(X)-3)+\beta(X)$ of the symmetric group on Ω , where $\alpha(X)$ and $\beta(X)$ respectively denote the numbers of fixed symbols and the transpositions in the cycle