A note on transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers

To Professor Y. Akizuki on the occasion of his 60th birthday
By
Noboru Ito
(Communicated by Prof. Nagata, Aug. 19, 1963)

1. Let $p \geqq 5$ be a prime number and let Ω be the set of symbols $1, \cdots, p$. Let (\mathcal{S} b be a nonsolvable transitive permutation group on Ω. Let $p_{0}(\mathbb{S})$ be the number of irreducible characters of (3) whose degrees are divisible by p. It seems to be little known about the number $p_{0}(\mathbb{S})$. In (9) it is shown that $p_{0}(\mathbb{S})>0$. There exist a few groups with $p_{0}(\mathscr{S})=1$; namely, $L F_{2}(l)$ as a permutation group of degree $l(l=5,7,11)$, where $L F_{2}(l)$ denotes the linear fractional group over the field of 1 elements ((2), p. 286). In the present note, under the special condition that $\frac{1}{2}(p-1)=q$ is also a prime, we show that the converse of this fact holds; namely, we prove the following

Theorem. Let $q=\frac{1}{2}(p-1)$ be also a prime. If $p_{n}(\mathbb{S})=1$, then $p=5,7,11$ and (BS_{3} is isomorphic to $L F_{2}(p)$.
2. Throughout this section we assume that $q=\frac{1}{2}(p-1)$ is a prime. Then in (6), (7) and (8) we studied the structure of (\mathbb{S}) to some extent. In particular, we proved that such a group (G) is triply transitive on Ω with the exception of $L F_{2}(7)$ and $L F_{2}(11)$. Now let us consider two irreducible characters $X_{0}(X)=\frac{1}{2}(\alpha(X)-1)$ $(\alpha(X)-2)-\beta(X)$ and $X_{00}(X)=\frac{1}{2} \alpha(X)(\alpha(X)-3)+\beta(X)$ of the symmetric group on Ω, where $\alpha(X)$ and $\beta(X)$ respectively denote the the numbers of fixed symbols and the transpositions in the cycle

