J. Math. Kyoto Univ. 9-3 (1969) 439-448

Flatness of an extension of a commutative ring

Dedicated Professor K. Asano for his sixtieth birthday

By

Masayoshi NAGATA

(Received September 3, 1969)

Throughout the present paper, we mean by a ring a commutative ring with identity and by a module a unitary one. Let R be a ring and let A be a homomorphic image of the polynomial ring R[X] of a set of variables X with kernel I. The main purpose of the present paper is to discuss some topics related to the following

Theorem 1. Assume that I is the principal ideal generated by $f(X) = a_0 X^{(0)} + a_1 X^{(1)} + \dots + a_n X^{(n)}$ $(a_i \in R; X^{(i)} \text{ monomials, } X^{(i)} \neq X^{(i)}$ if $i \neq j$). Let J be the ideal $\sum a_i R$ generated by the coefficients a_i of f(X). Then A is R-flat if and only if J is a direct summand of R (i.e., J = eR with an element $e \in R$ such that $e^2 = e$).

1. Preliminary results.

Besides very well known elementary facts on flatness, we use the following two results:

Lemma 1.1. Assume that R and R* are noetherian rings such that R* is an R-module. Let ϕ be the homomorphism from R into R* such that $\phi a = a \cdot 1$ (in R*). Let \mathfrak{M}^* be the set of maximal ideals of R* and let \mathfrak{M} be the set of prime ideals \mathfrak{m} of R such that $\mathfrak{m} = \phi^{-1}(\mathfrak{m}^*)$ with $\mathfrak{m}^* \in \mathfrak{M}^*$. Then R* is a flat R-module if