Projective modules over polynomial rings over division rings

By

S. PARIMALA and R. SRIDHARAN¹⁾

(Communicated by Prof. Nagata, Feb. 16, 1974)

Introduction. It was proved in [3] that if D is any (noncommutative) division ring, then there exist non-free projective ideals in D[X, Y]. The aim of this paper is to study the set of isomorphism classes of finitely generated projective modules over D[X, Y], where D is a division algebra which is finite-dimensional over its centre. In §1, we prove a proposition on projective modules over matrix rings and deduce (Cor. 1. 3) that if D is a finitedimensional central division algebra of dimension n^2 over K and L a splitting field for D, then for any finitely generated projective module P over D[X, Y], $L \otimes P$ is free over $M_{\pi}(L)[X, Y]$. If we choose a splitting field L for D which is a finite Galois extension of K with Galois group G and an isomorphism $L \otimes D[X, Y] \longrightarrow$ $M_n(L)[X, Y]$, we get a cocycle $f: G \longrightarrow \operatorname{Aut}_{L[X,Y]-alg} M_n(L)[X, Y]$. For any integer $m \ge 1$, let $Z^1(m)$ denote the set of maps $T: G \longrightarrow$ Aut $L[X,Y]M_{\pi}(L)[X,Y]^m$, where T satisfies a suitable cocycle condition and $T(\sigma)$ is $f(\sigma)$ -semilinear for every $\sigma \in G$. We prove (Th. 2.1) in §2, that for $m \ge 1$, the set of isomorphism classes of finitely generated projective modules of rank m (where rank is defined in a suitable manner) is in bijection with a quotient set $H^1(m)$ of $Z^1(m)$ modulo an equivalence relation. In § 3, we show (Cor. 3.2) that the

¹⁾ We thank the referee for critically reading the manuscript.