Subrings of a polynomial ring of one variable

By
Masayoshi Nagata

(Received, Oct. 8, 1976)

The following problem was communicated to the writer by Dr. A. Zaks of the University of Oregon:

We consider the polynomial ring $A[X]$ of one variable X over a normal domain A. Give a criterion for a ring R to coincide with $A[X] \cap K$ with a suitable field K containing A.

In this article, we give an answer as follows:
Theorem 1. Such an R is characterized by the property that there is a polynomial f which belongs to $X A[X]$ (i.e., the constant term of f is zero) such that R is generated by $S_{i}=\left\{g \in A[X] \mid \exists a, b \in A, a \neq 0, a g=b f^{i}\right\}(i=1,2, \cdots)$.

As for the proof, if $R=A$, then f is zero, and we assume that $R \neq A$. On the other hand, let k and L be the fields of quotients of A and R, respectively. Then we may assume that $K=L$. First we prove a lemma:

Lemma. 2 Assume that A is a valuation ring of k and that $f=c_{1} X^{n}+$ $c_{2} X^{n-1}+\cdots+c_{n} X$ is a polynomial over A such that some of the coefficients c_{i} are units in A. Then a polynomial $h=e_{0}+e_{1} f+\cdots+e_{s} f^{s}$, in f with coefficients e_{i} in k, is in $A[X]$ if and only if all e_{i} are in A.

Proof. The if part is obvious, and we want to prove the only if part. Assume that $h \in A[X] . e_{0}=h(0)$, and therefore $e_{0} \in A$. Then $f\left(e_{1}+\cdots+e_{s} f^{s-1}\right)$ $\in A[X]$. Since f is a primitive polynomial, we see that $e_{1}+\cdots+e_{s} f^{s-1} \in A[X]$. Thus we prove the assertion by induction on s.

QED
The if part of Theorem 1 follows from the following result:
Proposition 3. Under the assumption at the beginning, if $f \in X A[X]$, then $A[X] \cap k(f)$ is the ring generated by $S_{i}(i=1,2, \cdots)$ over A.

Proof. It is obvious that all the S_{i} are contained in $A[X] \cap k(f)$. Conversely, let h be an arbitrary element of $A[X] \cap k(f)$. We may assume that $f=c_{1} X^{n}+c_{2} X^{n-1}+\cdots+c_{n} X, \quad c_{i} \in A, c_{1} \neq 0$. Then X is integral over $A[f$, $\left.c_{1}^{-1}\right]$ and therefore $A[X] \cap k(f) \subseteq A\left[f, c_{1}^{-1}\right]$. This shows that $h=e_{0}+e_{1} f+\cdots$ $+e_{s} f^{s}$ with e_{i} in $A\left[c_{1}^{-1}\right] \subseteq k$. Since A is normal, A is the intersection of valu-

