Subrings of a polynomial ring of one variable

By

Masayoshi NAGATA

(Received, Oct. 8, 1976)

The following problem was communicated to the writer by Dr. A. Zaks of the University of Oregon:

We consider the polynomial ring A[X] of one variable X over a normal domain A. Give a criterion for a ring R to coincide with $A[X] \cap K$ with a suitable field K containing A.

In this article, we give an answer as follows:

Theorem 1. Such an R is characterized by the property that there is a polynomial f which belongs to XA[X] (i.e., the constant term of f is zero) such that R is generated by $S_i = \{g \in A[X] | \exists a, b \in A, a \neq 0, ag = bf^i\}$ ($i = 1, 2, \cdots$).

As for the proof, if R=A, then f is zero, and we assume that $R\neq A$. On the other hand, let k and L be the fields of quotients of A and R, respectively. Then we may assume that K=L. First we prove a lemma:

Lemma. 2 Assume that A is a valuation ring of k and that $f = c_1 X^n + c_2 X^{n-1} + \dots + c_n X$ is a polynomial over A such that some of the coefficients c_i are units in A. Then a polynomial $h = e_0 + e_1 f + \dots + e_s f^s$, in f with coefficients e_i in k, is in A[X] if and only if all e_i are in A.

Proof. The if part is obvious, and we want to prove the only if part. Assume that $h \in A[X]$. $e_0 = h(0)$, and therefore $e_0 \in A$. Then $f(e_1 + \dots + e_s f^{s-1}) \in A[X]$. Since f is a primitive polynomial, we see that $e_1 + \dots + e_s f^{s-1} \in A[X]$. Thus we prove the assertion by induction on s. QED

The if part of Theorem 1 follows from the following result:

Proposition 3. Under the assumption at the beginning, if $f \in XA[X]$, then $A[X] \cap k(f)$ is the ring generated by S_i ($i=1,2,\cdots$) over A.

Proof. It is obvious that all the S_i are contained in $A[X] \cap k(f)$. Conversely, let h be an arbitrary element of $A[X] \cap k(f)$. We may assume that $f = c_1 X^n + c_2 X^{n-1} + \dots + c_n X$, $c_i \in A$, $c_1 \neq 0$. Then X is integral over $A[f, c_1^{-1}]$ and therefore $A[X] \cap k(f) \subseteq A[f, c_1^{-1}]$. This shows that $h = e_0 + e_1 f + \dots + e_s f^s$ with e_i in $A[c_1^{-1}] \subseteq k$. Since A is normal, A is the intersection of valu-