An interacting system in population genetics, II

By

Tokuzo Shiga

(Communicated by Prof. S. Watanabe, Aug. 14, 1979)

1. Introduction

In the previous paper [10] we studied an interacting system in population genetics, which is called a continuous time stepping stone model. Let us review our model. Let S be a countable set. Each element *i* of S is called a colony. Assuming that there are two alleles A and B at each colony, we denote by x_i $(1-x_i)$ the gene frequency of the A-allele (resp. the B-allele) for the colony $i \in S$. We consider a time evolution of gene frequencies, which is caused by migration among colonies and random sampling drift.

Let $X=[0 \ 1]^s$ be the space of systems of gene frequencies, which is equipped with the product topology. Let C(X) be the Banach space of all continuous functions equipped with the supremum norm and $C_0^s(X)$ be the set of all C^2 -functions depending only on finite number of coordinates of X.

Let us consider the following infinite dimensional differential operator A,

(1.1)
$$Af(x) = \sum_{i \in S} \frac{1}{4N} x_i (1-x_i) \frac{\partial^2 f}{\partial x_i^2} + \sum_{i \in S} (\sum_{j \in S} q_{ij} x_j) \frac{\partial f}{\partial x_i},$$

where N>0 and q_{ij} $(i, j \in S)$ are constants such that $q_{ij} \ge 0$ for $i \ne j$ and $\sum_{j \in S} q_{ij} = 0$ for each $i \in S$.

Let $\{T_i\}$ be a strongly continuous semi-group on C(X) such that

(1.2)
$$T_t 1=1$$
 and $T_t f \ge 0$ for every $f \in C(X)$ satisfying $f \ge 0$,

and

(1.3)
$$T_t f - f = \int_0^t T_s A f \, ds \quad \text{for every } f \in C_0^2(X).$$

Such a semi-group $\{T_i\}$ is uniquely determined under the following assumption,

(1.4)
$$\sup_{i=0} |q_{ii}| < +\infty$$
. (cf. [10], [11]).

Here N means the effective population size of each colony and q_{ij} $(i \neq j)$ means the migration rate from $j \in S$ to $i \in S$.

Then $\{T_i\}$ defines a diffusion process on X, which we call a continuous time stepping stone model without mutation and selection.

Discrete time stepping stone models were first proposed by M. Kimura and