# A class of imperfect prime ideals having the equality of ordinary and symbolic powers 

By<br>Ngo Viet Trung<br>(Communicated by Prof. M. Nagata, Aug. 31, 1979)

## 1. Introduction.

Given a polynomial ring $R$ over a field, we are interested in prime ideals $p \subset R$ having the following property:
(A) $\mathfrak{p}^{n}=\mathfrak{p}^{(n)}$ for every positive integer $n$, where $\mathfrak{p}^{(n)}$ denotes the $n$-th symbolic power of $\mathfrak{p}$, i.e. the $\mathfrak{p}$-primary component of $\mathfrak{p}^{n}$.

In [5, Theorem 1], Hochster proved that (A) is equivalent to each of the following properties:
(B) $g r_{p}(R):=\bigoplus_{n=0}^{\infty} \mathfrak{p}^{n} / p^{n+1}$, the associated graded ring of $R$ with respect to $\mathfrak{p}$, is a domain.
(C) The Rees ring $R\left[T, \mathfrak{p} T^{-1}\right]$, the subring of $R\left[T, T^{-1}\right]$ generated over $R$ by the indeterminate $T$ and the elements $a T^{-1}$ with $a \in \mathfrak{p}$, is a unique factorization domain.

On the other hand, Samuel had conjectured that a unique factorization domain is a Cohen-Macaulay ring. Thus, it may be possible that (A) or (B) implies the Cohen-Macaulay property of $g r_{p}(R)$ because, by [6, Theorem 4.11], the CohenMacaulay property of $g r_{p}(R)$ is equivalent to the Cohen-Macaulay property of $R\left[T, \mathfrak{p} T^{-1}\right]$. If we have a prime ideal $\mathfrak{p} \subset R$ with (A) then we can construct either a Cohen-Macaulay graded domain or a counter-example to Samuel's conjecture.

Until now, beside some solitary examples, only two classes of prime ideals $\mathfrak{p}$ with (A) in polynomial rings over a field have been known:

1) $\mathfrak{p}$ is a complete intersection prime (see, e.g., [5, (2.1)]).
2) $\mathfrak{p}$ is generated by the $r \times r$ minors of an $r \times s$ matrix of indetərminates, $r \geqq s$ (see [5, (2.2)], [14] or [2]).

By all known prime ideals $\mathfrak{p}$ with (A) $g r_{p}(R)$ is always a Choen-Macaulay domain. Note that Nagata had raised the question of whether the zero-graded part of a positively graded Cohen-Macaulay ring is a Cohen-Macaulay ring [10, Question 3]. So one might also expect that (A) implies the Cohen-Macaulay property of $R / \mathfrak{p}$, the zero-graded part of $g r_{p}(R)$. But, like Nagata's question which was negatively answered in [10], that is not true. The first counterexample for that was shown by Hochster [5, (2.3)], and an another can be found

