A class of imperfect prime ideals having the equality of ordinary and symbolic powers

By

Ngo Viet TRUNG

(Communicated by Prof. M. Nagata, Aug. 31, 1979)

1. Introduction.

Given a polynomial ring R over a field, we are interested in prime ideals $\mathfrak{p} \subset R$ having the following property:

(A) $\mathfrak{p}^n = \mathfrak{p}^{(n)}$ for every positive integer n, where $\mathfrak{p}^{(n)}$ denotes the n-th symbolic power of \mathfrak{p} , i.e. the \mathfrak{p} -primary component of \mathfrak{p}^n .

In [5, Theorem 1], Hochster proved that (A) is equivalent to each of the following properties:

- (B) $gr_{\mathfrak{p}}(R) := \bigoplus_{n=0}^{\infty} \mathfrak{p}^n/\mathfrak{p}^{n+1}$, the associated graded ring of R with respect to \mathfrak{p} , is a domain.
- (C) The Rees ring $R[T, \mathfrak{p}T^{-1}]$, the subring of $R[T, T^{-1}]$ generated over R by the indeterminate T and the elements aT^{-1} with $a \in \mathfrak{p}$, is a unique factorization domain.

On the other hand, Samuel had conjectured that a unique factorization domain is a Cohen-Macaulay ring. Thus, it may be possible that (A) or (B) implies the Cohen-Macaulay property of $gr_{\mathfrak{p}}(R)$ because, by [6, Theorem 4.11], the Cohen-Macaulay property of $gr_{\mathfrak{p}}(R)$ is equivalent to the Cohen-Macaulay property of $R[T, \mathfrak{p}T^{-1}]$. If we have a prime ideal $\mathfrak{p} \subset R$ with (A) then we can construct either a Cohen-Macaulay graded domain or a counter-example to Samuel's conjecture.

Until now, beside some solitary examples, only two classes of prime ideals p with (A) in polynomial rings over a field have been known:

- 1) \mathfrak{p} is a complete intersection prime (see, e.g., [5, (2.1)]).
- 2) \mathfrak{p} is generated by the $r \times r$ minors of an $r \times s$ matrix of indetərminates, $r \ge s$ (see $\lceil 5, (2.2) \rceil, \lceil 14 \rceil$ or $\lceil 2 \rceil$).

By all known prime ideals $\mathfrak p$ with (A) $gr_{\mathfrak p}(R)$ is always a Choen-Macaulay domain. Note that Nagata had raised the question of whether the zero-graded part of a positively graded Cohen-Macaulay ring is a Cohen-Macaulay ring [10, Question 3]. So one might also expect that (A) implies the Cohen-Macaulay property of $R/\mathfrak p$, the zero-graded part of $gr_{\mathfrak p}(R)$. But, like Nagata's question which was negatively answered in [10], that is not true. The first counterexample for that was shown by Hochster [5, (2.3)], and an another can be found