On the equations of one-dimensional motion of compressible viscous fluids

By

Mari OKADA and Shuichi KAWASHIMA

(Communicated by Prof. Yamaguti, Nov. 10, 1981)

§1. Introduction

We consider the equations of the one-dimensional motion of a compressible, viscous and heat-conductive fluid in Lagrangian coordinates:

(1.1)
$$\begin{cases} \rho_t + \rho^2 u_x = 0, \\ u_t + p_x = (\mu \rho u_x)_x, \\ \theta_t + \frac{\theta p_\theta}{c_V} u_x = \frac{1}{c_V} \left\{ (\kappa \rho \theta_x)_x + \mu \rho u_x^2 \right\}, \end{cases}$$

where t is time and x denotes the Lagrangian mass coordinate. Here the unknown functions ρ , u and θ represent the density, velocity and absolute temperature of the fluid; the pressure p and the heat capacity at constant volume c_v are related to the thermodynamic quantities $\rho > 0$ and $\theta > 0$ by the equations of state, and p_{θ} denotes $\partial p/\partial \theta$; μ and κ are the coefficients of viscosity and heat conduction respectively.

We assume the following conditions on the system (1.1).

A₁: $p = p(\rho, \theta)$ and $c_V = c_V(\rho, \theta)$ are smooth functions of $(\rho, \theta) \in \mathcal{D}_{\rho,\theta} \equiv \{\rho > 0, \theta > 0\}$ and satisfy the general equations of state on $\mathcal{D}_{\rho,\theta}$, that is,

$$p_{\rho} \equiv \frac{\partial p}{\partial \rho} > 0, \quad c_{V} > 0, \quad \frac{\partial c_{V}}{\partial \rho} = -\theta p_{\theta\theta} / \rho^{2},$$

where $p_{\theta\theta} = \partial^2 p / \partial \theta^2$.

A₂: $\mu = \mu(\rho)$ and $\kappa = \kappa(\rho)$ are smooth functions of $\rho > 0$ (independent of $\theta > 0$) and satisfy $\mu > 0$ and $\kappa > 0$ for $\rho > 0$.

The assumptions $p_{\rho} > 0$ and $c_{\nu} > 0$ imply that the system (1.1) with $\mu = \kappa = 0$ is hyperbolic, while the assumptions $\mu > 0$ and $\kappa > 0$ imply that the equations of u and θ in (1.1) are parabolic.