Dirichlet finite harmonic differentials with integral periods on arbitrary Riemann surfaces

By

Masahiko TANIGUCHI

(Received March 19, 1982)

Introduction

In this paper we consider Dirichlet finite harmonic differentials with integral periods on arbitrary Riemann surfaces. From such a differential σ on an arbitrarily given Riemann surface R, we can construct a mapping $u_{\sigma}(p)$ (, for the definition, see §1,) from R into $S^1 = \{|z| = 1\}$, and we can take $u_{\sigma}^{-1}(t)$ as a "level set" of σ for every $t \in S^1$. Such a mapping can be extended continuously onto the Royden's compactification R^* of R. Now Theorem 1 in §1 states that for almost all t in $S^1 - u_{\sigma}(\Delta)$ the set $u_{\sigma}^{-1}(t)$ consists only of (at most countable number of) simple closed (, hence compact) curves in R, where Δ is the harmonic boundary of R^* . In particular, if $u_{\sigma}(\Delta)$ is a set of linear measure zero on S^1 , then the holomorphic quadratic differential $(-*\sigma + \sqrt{-1} \cdot 1\sigma)^2$ has closed trajectories (in the sense of K. Strebel).

Next Theorem 2 states that if t_1 and t_2 are contained in the same component of $S^1 - u_{\sigma}(\Delta)$, then the "level sets" $u_{\sigma}^{-1}(t_1)$ and $u_{\sigma}^{-1}(t_2)$ have same length with respect to the metric naturally induced by σ (, or equivalently, $*\sigma$ has same periods along $u_{\sigma}^{-1}(t_1)$ and $u_{\sigma}^{-1}(t_2)$ with suitable orientations).

Definitions and main theorems are stated in §1, and the applications are made to basic differentials and functions such as reproducing differentials for 1-cycles, Green's functions and harmonic measures in §2. Proofs of main theorems are given in §3, and examples are provided in §4.

§1. Definitions and main results

Let R be an arbitrary Riemann surface and $\Gamma_h(R)$ be the Hilbert space of square integrable *real* harmonic differentials on R. We say that a differential σ in $\Gamma_h(R)$ has *integral periods* if $\int_{C} \sigma$ is an integer for every 1-cycle c on R, and set

 $\Gamma_{hI}(R) = \{ \sigma \in \Gamma_h(R) : \sigma \text{ has integral periods} \}.$

Here note that $\Gamma_{he}(R)$ is clearly contained in $\Gamma_{hI}(R)$. For every $\sigma \in \Gamma_{hI}(R)$ and arbitrarily fixed point $p_0 \in R$ and real constant a_0 ,