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Introduction

in this paper we consider Dirichlet finite harmonic differentials with integral
periods on arbitrary Riemann surfaces. From such a differential a on an arbitrarily
given Riemann surface R, we can construct a mapping u ,(p )( , for the definition, see
§1,) from R into S 1 = {lz1=1}, and we can take u; 1(t) as a "level set" of a for every
t E S i. S u c h  a  mapping can be extended continuously onto th e  R oyden's corn-
pactification R * of R .  Now Theorem 1 in  §1 states that for almost all t  in  S 1 —
u ( d )  the set uV (t) consists only of (at most countable number of) simple closed
(, hence compact) curves in R , where d  is the harmonic boundary o f  R * .  In par-
ticular, if ita (d) is a set of linear measure zero on SI, then the holomorphic quadratic
differential ( —  1 . 1 ( 0 2  has closed trajectories (in the sense o f K . Strebel).

Next Theorem 2 states that if t ,  and t ,  are contained in the same component of
—u(4), then the "level sets" u ; 1(t,) and u ; 1(t 2 ) have same length with respect to

the metric naturally induced by a (, or equivalently, *a has same periods along u,,.- 1 (t i )
and u ;'( t 2 ) with suitable orientations).

Definitions and main theorems are stated in §1, and the applications are made
to  basic differentials and functions such a s  reproducing differentials fo r  1-cycles,
Green's functions and harmonic measures in §2. Proofs of main theorems are given
in §3, and examples are provided in §4.

§ 1 .  Definitions and main results

Let R be an arbitrary Riemann surface and F„(R) be the Hilbert space of square
integrable real harmonic differentials on R .  We say that a  differential a in Th (R)

has integral periods if a  is an integer for every 1-cycle c on R, and set

Fht(R)= la E F h (R ): a has integral periods} .

Here note that T h e (R ) is clearly contained in T h i ( R ) .  For every a G r h i (R) and arbi-
trarily fixed point po E R and real constant ia,),


