Towards a generalization of Mumford's Theorem

By

James D. LEWIS*

§1. Introduction

In this paper, we examine a theorem of Mumford, based on a technique of Severi, on the role of regular 2-forms in determining the "size" of the Chow group of 0-cycles on a smooth, complex, projective algebraic surface (cf [6]). Let X be a smooth, complex projective algebraic variety of dimension n, $CH_k(X) =$ $CH^{n-k}(X) =$ Chow group of algebraic cycles of dimension k (codim n - k) modulo rational equivalence, and $A_k(X) = \{v \in CH_k(X) | v \text{ is algebraically equivalent to}$ zero}. On rational cohomology (of X) there is equipped an arithmetic filtration, for which to quote in [2], "... embodies deep arithmetic properties of [the scheme] X". Our purpose is to apply Mumford's theorem to exhibit a connection between graded pieces of this filtration and the "size" of $A_k(X)$ for $k \ge 0$. According to the statement of the main theorem below, when k = 0, we arrive at the conclusion of Mumford's theorem for the case n = 2, and Roitman's generalization (see [8]) for $n \ge 2$, namely $h^{p,0}(X) \ne 0$ for some $p \ge 2$ implies $A_0(X)$ "infinite dimensional".

We begin with the setting of this paper by recalling two filtrations (see also [2]). $F_a^k(i) = \text{Gysin images of } H^{i-2q}(Y, \mathbf{Q}) \text{ in } H^i(X, \mathbf{Q}), \text{ where } Y = \text{desingularization}$ of T and where $T \subset X$ is a subvariety of codimension $q \ge k$; $F_H^k(i) = \text{largest}$ subHodge structure in $\{F^k H^i(X, \mathbf{C})\} \cap H^i(X, \mathbf{Q})$. There is the well known inclusion $F_a^k(i) \subset F_H^k(i)$, conjectured to be an equality ([Grothendieck amended] Hodge conjecture), and corresponding graded morphisms $T_{k,i}$: $Gr_a^k(i) = F_a^k(i)/F_a^{k+1}(i) \rightarrow F_H^k(i)/F_H^{k+1}(i) = Gr_H^k(i)$, which again translate to isomorphisms if one assumes the Hodge conjecture to be true. Now let V be a smooth projective variety, $j: W \subset V$ a smooth hyperplane section, and recall the weak Lefschetz theorem, namely $j^*: H^i(V) \rightarrow H^i(W)$ injective (resp. isomorphism) for $i = \dim W$ (resp. $i < \dim W$). Let $(j^*)^{-1}$ be the left inverse to j^* (as introduced in [4]). Our main assumption is a standard conjecture of Lefschetz type:

A(*): $(j^*)^{-1}$ is algebraic, i.e. induced by an algebraic cycle with rational coeffi-

^{*} Partially supported by a grant from the Natural Sciences and Engineering Research Council. The author gratefully acknowledges the support of the National Science Foundation (Grant #DMS-6810730(1)) and the hospitality of the Institute for Advanced Study at Princeton during the Fall of 1986, while this work was in progress.

Communicated by Prof. Nagata, Sept. 29, 1987