Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator

By
Ichiro Shigekawa*

1. Introduction

Sobolev spaces over the Wiener space, or more generally over an abstract Wiener space, play a fundamental role in the Malliavin calculus. They are based on an Ornstein-Uhlenbeck operator, denoted by L, on the Wiener space. In this paper, we consider a different kind of Ornstein-Uhlenbeck operator L_{A}.

To be precise, let (B, H, μ) be an abstract Wiener space, i. e. B is a real separable Banach space and μ is a Gaussian measure with a reproducing kernel Hilbert space H. Let A be a strictly positive definite self-adjoint operator in H. We consider the following semigroup (called an Ornstein-Uhlenbeck semigroup)

$$
\begin{equation*}
T_{t} f(x)=\int_{B} f\left(e^{-t A} x+\sqrt{ } 1-e^{-2 t \bar{A}} y\right) \mu(d y) . \tag{1.1}
\end{equation*}
$$

The generator of $\left\{T_{t}\right\}$ is an operator in our consideration. We denote it by L_{A}. Moreover the associated Dirichlet form is given by

$$
\begin{equation*}
\mathcal{E}(f, g)=\int_{B}\left(\sqrt{ } A^{*} D f(x), \sqrt{A^{*}} D g(x)\right)_{H *} \mu(d x) \tag{1.2}
\end{equation*}
$$

where D is the H-derivative. If $A=1$, then L_{A} is the usual Ornstein-Uhlenbeck operator L.

Its origin is in the quantum field theory. In physical literature, the OrnsteinUhlenbeck operator in the Malliavin calculus is called the Number operator and our Ornstein-Uhlenbeck operator is the free Hamiltonian. So this operator is important in physics.

To construct Sobolev spaces in the Malliavin calculus, the Meyer equivalence which insists the equivalence of two kinds of norms defined by L and D, is essential. Such a problem was first discussed by P.A. Meyer [12] and then M. Krée, P. Krée [9] and H. Sugita [22] proved it in the higher degree case. In this paper, we will obtain an analogous equivalence. This problem was proposed by J. Potthoff [16]. The equivalence in our case is a little bit different from that in the Malliavin calculus because A is not bounded in general.

The organization of this paper is as follows. In the section 2, we give a precise

[^0]
[^0]: * This research was partially supported by Grant-in-Aid for Scientific Research (No. 02740107), Ministry of Education, Science and Culture.

 Received January 30, 1991

