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0. Introduction

It is one of the most important problems in integral geometry to characterize
the ranges of Radon transforms. F.John [9] gave the first answer to this
problem. His result is that the range of the X-ray transform on R?® is
characterized by a second order ultrahyperbolic differential operator. Gelfand,
Graev, and Gindikin [1] extended John’s result: they characterized the ranges
of d-plane Radon transforms on R" and C" by a system of second order differential
operators on an affine Grassmann manifold. Farthermore, Gonzalez [4] gave a
simple characterization of it by an invariant differential operator on an affine
Grassmann manifold. Grinberg [5] characterized the range of the projective
k-plane Radon transform on the n-dimensional real projective space P"R and
the n-dimensional complex projective space P"C by a system of second order
differential operators, and in [10], we gave another type of range characterization
for the Radon transform on a complex projective space; we characterized the range
by a single differential operator which is a fourth order invariant differential
operator on a complex Grassmann manifold and which is ultrahyperbolic type of
differential operator.

In this paper, we examine mainly the range of the Radon transform R = R,
on the n-dimensional sphere S" for 1 <1< n — 2, which we define by integrating a
function f on S" over an oriented [-dimensional totally geodesic sphere &, that
is, we define R as follows

1 .
Rf(¢) = m J g'f(X) dU:(X)~

where dv,(x) is the canonical measure on { = §". This Radon transform R maps

. . N~ .
smooth functions on S" to smooth functions on Gr,,, ,,,, the compact oriented
real Grassmann manifold, that is, R: C*(8") —» C*(Gr; | ,+1)-

The main result of this paper is the following:

Theorem. There exists a fourth order invariant differential operator P on
~
Griyy 41 Such that the range Im R of R is identical with its kernel Ker P, i.e.,
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