Range characterization of Radon transforms on S^n and P^nR

By

Tomoyuki Какені

0. Introduction

It is one of the most important problems in integral geometry to characterize the ranges of Radon transforms. F. John [9] gave the first answer to this problem. His result is that the range of the X-ray transform on \mathbf{R}^3 is characterized by a second order ultrahyperbolic differential operator. Gelfand, Graev, and Gindikin [1] extended John's result; they characterized the ranges of d-plane Radon transforms on \mathbf{R}^n and \mathbf{C}^n by a system of second order differential operators on an affine Grassmann manifold. Farthermore, Gonzalez [4] gave a simple characterization of it by an invariant differential operator on an affine Grassmann manifold. Grinberg [5] characterized the range of the projective k-plane Radon transform on the n-dimensional real projective space $P^n R$ and the *n*-dimensional complex projective space P''C by a system of second order differential operators, and in [10], we gave another type of range characterization for the Radon transform on a complex projective space; we characterized the range by a single differential operator which is a fourth order invariant differential operator on a complex Grassmann manifold and which is ultrahyperbolic type of differential operator.

In this paper, we examine mainly the range of the Radon transform $R = R_l$ on the *n*-dimensional sphere \mathbf{S}^n for $1 \le l \le n-2$, which we define by integrating a function f on \mathbf{S}^n over an oriented *l*-dimensional totally geodesic sphere ξ , that is, we define R as follows

$$Rf(\xi) = \frac{1}{\operatorname{Vol}(\mathbf{S}^{l})} \int_{x \in \xi} f(x) \, dv_{\xi}(x),$$

where $dv_{\xi}(x)$ is the canonical measure on $\xi \subset \mathbf{S}^n$. This Radon transform R maps smooth functions on \mathbf{S}^n to smooth functions on $\widetilde{Gr}_{l+1,n+1}$, the compact oriented real Grassmann manifold, that is, $R: C^{\infty}(\mathbf{S}^n) \to C^{\infty}(\widetilde{Gr}_{l+1,n+1})$.

The main result of this paper is the following:

Theorem. There exists a fourth order invariant differential operator P on $\widetilde{Gr}_{l+1,n+1}$ such that the range Im R of R is identical with its kernel Ker P, i.e.,

Communicated by Prof. N. Iwasaki, March 30, 1991