Surfaces of general type whose canonical map is composed of a pencil of genus 3 with small invariants

By
Jin-Gen Yang* and Masayoshi Miyanishi

0. Introduction

Let X be a minimal surface of general type over the complex number field. Assume that $p_{g}(X) \geq 3$, and $\left|K_{X}\right|$ is composed of a pencil. The existence of such surfaces was known as early as 1948 by Pompilij's examples. Later there have been studies by Beauville, Debarre, Xiao and others ([3], [5], [10], [12]). Refer to Section 2 of [4] for a nice survey.

Let b denote the geometric genus of the image of the canonical map and let g denote the genus of a general member of the pencil of which $\left|K_{X}\right|$ is composed. Assume that $g \geq 3$. Then the inequality

$$
\begin{equation*}
K_{X}^{2} \geq 4 p_{g}(X)+4(b-1) \tag{1}
\end{equation*}
$$

is valid with very few exceptions (cf. Theorem 2.3 of [4]).
In this paper we will give an example with $p_{g}=3, b=0, g=3$ and $K^{2}=7$. Then we will prove that is the lowest possible K^{2}.

The other possible exception to (1) is the case $p_{g}=4$ and $K_{X}^{2}=9$, which was proposed as an open problem in [11]. We will prove that this case does not occur, and consequently there is only one exception to (1).

1. Preliminaries

1.1. \mathbf{P}^{2}-bumdles over \mathbf{P}^{1}. First we state some basic facts about \mathbf{P}^{2}-bundles over the projective line \mathbf{P}^{1}, which will be used throughout this paper. We will use $\mathfrak{O}(n)$ to denote either the invertible sheaf of degree n on \mathbf{P}^{1} or its corresponding line bundle, depending on the context.

Let V be a vector bundle of rank 3 over \mathbf{P}^{1}. It is well-known that V can be decomposed into a direct sum of line bundles, i.e., $V \cong \mathscr{O}(k) \oplus \mathscr{O}(m) \oplus \mathscr{O}(n)$. Let $W=\mathbf{P}(V)$ be the associated \mathbf{P}^{2}-bundle over \mathbf{P}^{1} and let $f: W \rightarrow \mathbf{P}^{1}$ denote the natural map. Since $\mathbf{P}(V \otimes L) \cong \mathbf{P}(V)$ for any line bundle L, we may

[^0]
[^0]: *Communicated by Prof. K. Ueno, February 3, 1997
 Supported by the Tian Yuan Fund of China.

