Surfaces of general type whose canonical map is composed of a pencil of genus 3 with small invariants

By

Jin-Gen YANG* and Masayoshi MIYANISHI

0. Introduction

Let X be a minimal surface of general type over the complex number field. Assume that $p_q(X) \ge 3$, and $|K_X|$ is composed of a pencil. The existence of such surfaces was known as early as 1948 by Pompilij's examples. Later there have been studies by Beauville, Debarre, Xiao and others ([3], [5], [10], [12]). Refer to Section 2 of [4] for a nice survey.

Let b denote the geometric genus of the image of the canonical map and let g denote the genus of a general member of the pencil of which $|K_X|$ is composed. Assume that $g \ge 3$. Then the inequality

$$K_X^2 \ge 4p_g(X) + 4(b-1) \tag{1}$$

is valid with very few exceptions (cf. Theorem 2.3 of [4]).

In this paper we will give an example with $p_g=3$, b=0, g=3 and $K^2=7$. Then we will prove that is the lowest possible K^2 .

The other possible exception to (1) is the case $p_g = 4$ and $K_X^2 = 9$, which was proposed as an open problem in [11]. We will prove that this case does not occur, and consequently there is only one exception to (1).

1. Preliminaries

1.1. \mathbf{P}^2 -bundles over \mathbf{P}^1 . First we state some basic facts about \mathbf{P}^2 -bundles over the projective line \mathbf{P}^1 , which will be used throughout this paper. We will use $\mathcal{O}(n)$ to denote either the invertible sheaf of degree n on \mathbf{P}^1 or its corresponding line bundle, depending on the context.

Let V be a vector bundle of rank 3 over \mathbf{P}^1 . It is well-known that V can be decomposed into a direct sum of line bundles, i.e., $V \cong \mathcal{O}(k) \oplus \mathcal{O}(m) \oplus \mathcal{O}(n)$. Let $W = \mathbf{P}(V)$ be the associated \mathbf{P}^2 -bundle over \mathbf{P}^1 and let $f : W \to \mathbf{P}^1$ denote the natural map. Since $\mathbf{P}(V \otimes L) \cong \mathbf{P}(V)$ for any line bundle L, we may

^{*}Communicated by Prof. K. Ueno, February 3, 1997

Supported by the Tian Yuan Fund of China.