On extensions of projective indecomposable modules

By
Masafumi Murai

Introduction

Let G be a finite group and p a prime. Let (K, R, k) be a p-modular system. We assume that K contains the $|G|$-th roots of unity and that k is algebraically closed. Suppose we are given a normal subgroup N of G such that G / N is a p-group and a G-invariant block b of N such that $N=Q C_{N}(Q)$ for a defect group Q of b. Then, as is well-known, b has (up to isomorphism) a unique projective indecomposable $R N$-module V. It seems natural to ask whether there exists an extension U to G of V such that a vertex of U intersects N trivially. Let B be a unique block of G covering b. In Section 3, we obtain two necessary conditions such a module U must satisfy. Let P be a vertex of U and W a P-source of U. Then
(1) $P Q$ is a defect group of B;
(2) W is an endo-permutation module, which is identified with a lift of a source of a unique simple $k G$-module in B.
(cf. Proposition 3.3, Corollary 3.17.)
In Section 4 we study the case where G / N is cyclic (and (1) holds for a p-subgroup P with $P \cap Q=1$) and show that any indecomposable $R G$-module in B with vertex P and a P-source W as in (2) is actually an extension of V.
(Although we have mentioned only $R G$-modules, we also obtain similar results for $k G$-modules.)

In Section 1 we define an action of the group of capped endo-permutation modules over p-groups P (Dade [1, 2]) on the set of indecomposable P-modules. In Section 2 we determine vertices and sources of certain indecomposable modules.

Notation and convention

Let o denote R or k. For $o G$-modules $V_{i}(i=1,2), V_{1} \otimes V_{2}$ stands for $V_{1} \otimes_{o} V_{2}$. Also for a direct product $G=G_{1} \times G_{2}$ and $o G_{i}$-modules $V_{i}(i=1,2)$, $V_{1} \times V_{2}$ stands for the external tensor product $V_{1} \otimes_{o} V_{2}$. We denote by 1_{G} the trivial $o G$-module of rank one. For an $R G$-module U, let $U^{*}=U / \pi U$, where πR is the maximal ideal of R. For a $k G$-module X, an $R G$-module L such that

[^0]
[^0]: Received September 11, 1995
 Revised September 18, 1997

