ABEL SUMMABILITY OF THE AUTOREGRESSIVE SERIES FOR THE BEST LINEAR LEAST SQUARES PREDICTORS

M. L. HUANG, R. A. KERMAN AND Y. WEIT

1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space. Denote by $L^2(\Omega, \mathcal{F}, P)$ the Hilbert space of complex-valued random variables X, with expectation $E(X) = \int_{\Omega} X \, dP = 0$ and variance $E(|X|^2) < \infty$, having inner product $\langle X, Y \rangle = E(X\overline{Y})$. A sequence of random variables $\{X_k\}_{k=-\infty}^{\infty}$ in $L^2(\Omega, \mathcal{F}, P)$ is a weakly stationary stochastic process (WSSP) if for all k, $l \in Z$, the second moment $E(X_k \overline{X}_{k+l})$ depends only on l. The covariance function $K(l) = E(X_k \overline{X}_{k+l})$ thus defined is nonnegative definite and so

(1.1)
$$K(l) = \int_T e^{-il\theta} dF(e^{i\theta}), \qquad l \in \mathbb{Z}$$

for an essentially unique function F, which is bounded and nondecreasing in θ on $T = [-\pi, \pi)$.

Given $n \ge 1$, the best linear least squares predictor of X_n , based on past and present observations, is defined to be the orthogonal projection of X_n on $M = \overline{s_p}\{X_k, k \le 0\}$, the closed linear span of ..., X_{-2}, X_{-1}, X_0 . The projection is denoted by \widehat{X}_n . We assume the WSSP $\{X_k\}_{k=-\infty}^{\infty}$ is purely nondeterministic, in the sense that $\bigcap_{m=0}^{\infty} \overline{s_p}\{X_k, k \le -m\} = \{0\}$. This guarantees that $X_n \notin M$ for all $n \ge 1$ and that the function F in (1.1) is absolutely continuous with respect to Lebesgue measure on $T, dF(e^{i\theta}) = w(e^{i\theta})d\theta$. Moreover, the function $w(e^{i\theta})$, the spectral density of the WSSP, can be expressed in the form $w(e^{i\theta}) = |\phi(e^{i\theta})|^2$, where the so-called optimal factor $\phi = \phi(z)$ is an outer function in the Hardy space $H^2(D)$ on the unit disk $D = \{z \in \mathbb{C}: |z| < 1\}$ and has no zero in D.¹ See [5, pp. 53, 69].

The Spectral Theorem for unitary operators yields a Hilbert space isomorphism between the time domain $L^2(\Omega, \mathcal{F}, P)$ and the spectral domain

$$L^{2}(w) = \left\{ f \colon \|f\|_{2} := \left[\int_{T} |f(e^{i\theta})|^{2} w(e^{i\theta}) d\theta \right]^{1/2} < \infty \right\},\$$

in which $X_k \leftrightarrow e^{-ik\theta}$, $k = 0, \pm 1, \pm 2, \ldots$; see [2, p. 241]. Denote by ϕ_n the image of $\hat{X}_n, n \ge 1$, under the isomorphism, so that ϕ_n is the projection of $e^{-in\theta}$

© 1997 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 30, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42A24, 60G25; Secondary 30D55, 62M10.

The research of the first two authors was supported in part by NSERC grants.

¹Since $\phi(0) \neq 0$, we may assume, without loss of generality, that $\phi(0) = 1$.