A PRIORI ESTIMATES FOR DIFFERENTIAL OPERATORS IN L_{∞} NORM¹

ΒY

K. DE LEEUW AND H. MIRKIL

It is well known that if A and B are constant-coefficient partial differential operators, with A elliptic and order $B \leq \text{order } A$, then

$$\int |B\varphi|^{2} \leq \text{const} \int (|\varphi|^{2} + |A\varphi|^{2})$$

for all infinitely differentiable functions φ of compact support. The proof of this "a priori estimate" uses Fourier transforms and the Plancherel theorem. Similar estimates are known for p^{th} powers (1 in place of squares, although the easy proof for <math>p = 2 does not generalize. In the present paper we investigate the limiting case $p = \infty$, where supremum norms appear in place of L_p integral norms. This case turns out to be genuinely exceptional. For instance (Proposition 2) if A and B have the same order and $B \neq cA$, then no a priori estimate

$$\sup |B\varphi| \leq \text{const sup } (|\varphi| + |A\varphi|)$$

is possible. But (Proposition 5) if B has strictly lower order, and A is elliptic, then the estimate is reinstated. In fact (converse half of Proposition 5) in dimension $n \ge 3$ this property is characteristic of elliptic operators, just as the L_2 a priori estimate is characteristic of elliptic operators for the case of equal orders. Before proving these last assertions we must establish (Propositions 3 and 4) some basic facts about the *n*-dimensional Fourier transform that do not seem to be in the literature. The connection between a priori estimates and Fourier transforms is explained in Proposition 1.

The other limiting case p = 1 has recently been treated by Ornstein [4]. The results for L_1 are essentially the same as those for L_{∞} , but seem to be much harder to prove.

Operator domination

If

$$A = \sum a_e \left(\frac{\partial}{\partial x}\right)^e = \sum a_{e_1 \cdots e_n} \left(\frac{\partial}{\partial x_1}\right)^{e_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{e_n}$$

is a partial differential operator with constant coefficients, then its *full charac*teristic polynomial is

$$P = \sum a_e(ix)^e = \sum a_{e_1\cdots e_n}(ix_1)^{e_1}\cdots (ix_n)^{e_n}.$$

Received August 12, 1962.

¹ This work was supported (in part) by the NSF and by the Air Force Office of Scientific Research.