A NOTE ON THE VOLUME OF A RANDOM POLYTOPE IN A TETRAHEDRON

BY
Christian Buchta

1. Introduction

The following problem in integral geometry was presented by Klee [5] in 1969:

From a simplex of unit volume in Euclidean d-space d +1 points are chosen independently and uniformly at random. What is the expected volume $\mathscr{V}(d)$ of their convex hull?

Let us consider the more general question of determining the expected volume $\mathscr{V}(d, n)$ of the convex hull of $n \geqq d+1$ points chosen independently and uniformly from the given d-simplex. If $d=1$, almost trivial calculations yield

$$
\mathscr{V}(1, n)=1-\frac{2}{n+1} .
$$

In the case $d=2$, the expected volume of the convex hull of n points chosen independently and uniformly from an arbitary convex polygon was derived in [1]; especially,

$$
\mathscr{V}(2, n)=1-\frac{2}{n+1} \sum_{k=1}^{n} \frac{1}{k}
$$

For $d=3$, it is only known (cf. [2]) that

$$
\mathscr{V}(3,5)=\frac{5}{2} \mathscr{V}(3,4)
$$

In the following we give a representation of $\mathscr{V}(3, n)$ by a threefold definite integral, whence we deduce that

$$
1-\mathscr{V}(3, n) \sim \frac{3}{4} \frac{\log ^{2} n}{n}
$$

[^0]
[^0]: Received August 21, 1984.

