INVARIANT IDEALS OF POSITIVE OPERATORS IN $C(X)$. II

BY
H. H. Schaefer ${ }^{1}$

The present paper constitutes the second part of a study of ideals in $C(X)$ invariant under a given positive linear operator. While it will be necessary to have part I^{2} on hand for an understanding of certain details, we shall briefly recall some basic definitions, notations, and results of part I.

Throughout the paper, T denotes a positive linear operator on the complex Banach algebra $C(X)$, where X is compact Hausdorff. A T-ideal (Def. 1) is a closed proper ideal $J \subset C(X)$ such that $T(J) \subset J$. Every T-ideal J gives rise to a positive operator T_{J} on $C(X) / J$. In general, $C(X) / J$ is identified with $C\left(S_{J}\right)$, where S_{J} (called the support of J) is the unique closed subset of X such that $J=\left\{f: f\left(S_{J}\right)=(0)\right\} . \quad T$ is called irreducible (Def. 2) if (0) is the only T-ideal; a T-ideal J is maximal if and only if T_{J} is irreducible. T is called ergodic (Def. 3) if for each $f \in C(X)$, the convex closure of the orbit $\left\{f, T f, T^{2} f, \cdots\right\}$ contains a fixed vector of T; if the semigroup $\left\{T^{n}\right\}$ is bounded, ergodicity of T is equivalent with the strong convergence (for $n \rightarrow \infty$) of the averages

$$
M_{n} f=n^{-1}\left(f+T f+\cdots+T^{n-1} f\right) \rightarrow P f
$$

P being a positive projection onto the fixed space of T. If $M_{n} \rightarrow P$ norm converges, T is called uniformly ergodic (Def. 3a). If $T e=e$ where $e(s)=1$ for all $s \in X, T$ is called a Markov operator.

Theorem 1 (§2). For each maximal T-ideal J, there exists an eigenvector (measure) $\phi \geq 0$ of the adjoint operator T^{\prime} such that

$$
J=\{f: \phi(|f|)=0\}
$$

The corresponding eigenvalue $\rho \geq 0$ is zero iff ϕ is supported by a single point $s \in X$ for which $T e(s)=0$.

Theorem 2 (§3). If T is an ergodic Markov operator and Φ denotes the (weak* compact) set of all positive, normalized T-invariant measures on X, the mapping

$$
\phi \rightarrow I_{\phi}=\{f: \phi(|f|)=0\}
$$

is a bijection of the set Λ of extreme points of Φ onto the set of all maximal T-ideals. Moreover, every T-ideal $I_{\phi}(\phi \epsilon \Phi)$ is the intersection of all maximal T-ideals containing it.

[^0]
[^0]: Received October 23, 1967.
 ${ }^{1}$ Supported in part by a National Science Foundation grant.
 ${ }^{2}$ Illinois J. Math, vol. 11(1967), pp. 703-715. Numeration of definitions, results and references is continued from part I.

