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The present pper constitutes the second part of study of ideals in C(X)
iavariant under given positive lineur operator. While it will be necessary
to have part I on hand for an uaderstanng of certain details, we shall
briefly recall some basic deflations, notations, and results of part I.
Throughout the paper, T denotes u positive linear operator on the complex

Bnach algebr C(X), where X is compact Hausdo. A T-ideal (Def. 1)
is a closed proper ideal J C(X) such that T(J) J. Every T-ideal J
gives rise to u positive operator T on C(X)/J. In general, C(X)/J is
identified with C(S), where S (called the support of J) is the uque closed
subset of X such that J {f f(S) (0)}. T is called irreducible (Def. 2)
if (0) is the only T-ideal; T-ideal J is maximal if and only if T is irreducible.
T is called ergodic (Def. 3) if for each f e C(X), the convex closure of the
orbit {L Tf, T2f, ...} contains u ed vector of T; if the semigroup {T"} is
bounded, ergodicity of T is equivalent with the strong convergence (for
n of the averuges

M,f n-l(f + Tf + + T"-f) Pf,

P being u positive projection onto the fixed space of T. If M, P norm
converges, T is called uniformly ergodic (Def. 3). If Te e where e(s) 1
for M1 s e X, T is called u Markov operator.

TEORE 1 (2). For each maximal T-ideal J, there exists an eigenvector
(measure) 0 of the adjoint operator T such that

J {/:( If I) 0}.

The correspding eigenvalue p 0 is zero iff is supported by a single poin$
s e X for which Te(s) O.

THEOREM 2 (3). If T is an ergodic Markov operator and denotes the
(weak* compact) set of all positive, normalized T-invariant measures X, the
mapping

is a bijecti of the set A of extreme points of to he set of all maximal T-ideals.
Moreover, every T-ideal I ( e@) is the intersection of all maximal T-ideals
containing it.
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