INVARIANT IDEALS OF POSITIVE OPERATORS IN C(X). II

BY

H. H. SCHAEFER¹

The present paper constitutes the second part of a study of ideals in C(X) invariant under a given positive linear operator. While it will be necessary to have part I^2 on hand for an understanding of certain details, we shall briefly recall some basic definitions, notations, and results of part I.

Throughout the paper, T denotes a positive linear operator on the complex Banach algebra C(X), where X is compact Hausdorff. A T-ideal (Def. 1) is a closed proper ideal $J \subset C(X)$ such that $T(J) \subset J$. Every T-ideal Jgives rise to a positive operator T_J on C(X)/J. In general, C(X)/J is identified with $C(S_J)$, where S_J (called the support of J) is the unique closed subset of X such that $J = \{f : f(S_J) = (0)\}$. T is called irreducible (Def. 2) if (0) is the only T-ideal; a T-ideal J is maximal if and only if T_J is irreducible. T is called ergodic (Def. 3) if for each $f \in C(X)$, the convex closure of the orbit $\{f, Tf, T^2f, \cdots\}$ contains a fixed vector of T; if the semigroup $\{T^n\}$ is bounded, ergodicity of T is equivalent with the strong convergence (for $n \to \infty$) of the averages

$$M_n f = n^{-1}(f + Tf + \cdots + T^{n-1}f) \rightarrow Pf,$$

P being a positive projection onto the fixed space of *T*. If $M_n \to P$ norm converges, *T* is called uniformly ergodic (Def. 3a). If Te = e where e(s) = 1 for all $s \in X$, *T* is called a Markov operator.

THEOREM 1 (§2). For each maximal T-ideal J, there exists an eigenvector (measure) $\phi \geq 0$ of the adjoint operator T' such that

$$J = \{f : \phi(|f|) = 0\}.$$

The corresponding eigenvalue $\rho \geq 0$ is zero iff ϕ is supported by a single point $s \in X$ for which Te(s) = 0.

THEOREM 2 (§3). If T is an ergodic Markov operator and Φ denotes the (weak^{*} compact) set of all positive, normalized T-invariant measures on X, the mapping

$$\phi \to I_{\phi} = \{f : \phi(|f|) = 0\}$$

is a bijection of the set Λ of extreme points of Φ onto the set of all maximal T-ideals. Moreover, every T-ideal I_{ϕ} ($\phi \in \Phi$) is the intersection of all maximal T-ideals containing it.

Received October 23, 1967.

¹ Supported in part by a National Science Foundation grant.

² Illinois J. Math, vol. 11(1967), pp. 703-715. Numeration of definitions, results and references is continued from part I.