MEAN GROWTH AND COEFFICIENTS OF H^p functions¹

BY

P. L. DUREN AND G. D. TAYLOR

Let f(z) be analytic in the unit disk |z| < 1, and let

$$M_{p}(r,f) = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right\}^{1/p}, \qquad 0
$$M_{\infty}(r,f) = \max_{|z|=r} |f(z)|.$$$$

The function f is said to belong to the class H^p $(0 if <math>M_p(r, f)$ is bounded for $0 \le r < 1$. Hardy and Littlewood [4], [5] proved that $f \in H^p$ implies

$$M_q(r,f) = o((1-r)^{1/q-1/p}), \quad 0$$

and they pointed out that the exponent (1/q - 1/p) is best possible. In the present paper, we show that the Hardy-Littlewood estimate is best possible in a stronger sense, and we apply this result to prove that several known theorems on the Taylor coefficients of H^p functions are also best possible.

THEOREM 1. Let $0 , and let <math>\phi(r)$ be positive and non-increasing on $0 \le r < 1$, with $\phi(r) \to 0$ as $r \to 1$. Then there exists a function $f \in H^p$ such that

$$M_q(r, f) \neq O(\phi(r)(1 - r)^{1/q - 1/p}).$$

For $q = \infty$, this theorem was obtained in [6]. The more general result is now deduced from this special case. We shall need the following elementary lemma (see [2, Kap. IX, §5]).

LEMMA. Let $1 , and let <math>\rho = (1 + r)/2$, where 0 < r < 1. Then as $r \rightarrow 1$,

$$\int_0^{t^n} |\rho e^{it} - r|^{-p} dt = O((1 - r)^{1-p})$$

Proof of Theorem 1. Let $f \in H^p$, p < q, and suppose first that $1 < q < \infty$. If $\rho = (1 + r)/2$, we have

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=\rho} \frac{f(\zeta)}{\zeta-z} d\zeta, \qquad \qquad z = r e^{i\theta}.$$

Thus, by Hölder's inequality and the lemma,

$$M_{\infty}(r,f) \leq C(1-r)^{-1/q}M_{q}(\rho,f).$$

From this it is clear that the theorem for $1 < q < \infty$ follows from the case

Received May 8, 1968.

¹ Supported in part by National Science Foundation contracts.