ON FOURS GROUPS

BY
J. L. Alperin ${ }^{1}$

In a recent paper [2], Ernest Shult has discovered remarkable necessary and sufficient conditions for a conjugacy class of involutions of a group to be the set of non-identity elements of a subgroup of order greater than two. Even more striking is the fact that this result is a consequence of a theorem characterizing the symplectic groups over two-element fields. In trying to give a direct proof of this corollary we have, in fact, come up with a stronger result, namely:

Theorem. If V is a fours subgroup of a group G and V intersects $O_{2}(G)$ trivially, then there is an involution of G, conjugate to an element of V, which commutes with no involution of V.

It turns out that this strange theorem can even be used in studying doubly transitive groups, in places where Shult's result is not strong enough [3]. We shall now proceed by first proving the theorem and then stating and deriving Shult's result from it. All our notation is standard [1].

Since $V \cap O_{2}(G)=1$, Baer's theorem [1, p. 105] yields that each involution of V has a conjugate together with which it generates a subgroup of order not a power of two. However, this subgroup is dihedral as it is generated by two involutions. Thus, it follows that each element of V inverts a non-identity element of odd order of G.

Let $a \epsilon V^{*}$ and choose such an element x. If a^{x} centralizes no element of V^{*} we are done; thus we may assume a^{x} does centralize an element b of V^{*}. But $a^{x}=x^{-1} a x=a x^{2}$ and V is abelian so x^{2} centralizes b. In particular, $b \neq a$. Moreover, x centralizes b since x is a power of x^{2} as x has odd order.

Similarly, b inverts a non-identity element y of odd order and we may assume that y centralizes an element of V^{*} other than b. If y centralizes a then we have the following symmetrical relations:

$$
x^{a}=x^{-1}, \quad x^{b}=x, \quad y^{a}=y, \quad y^{b}=y^{-1}
$$

On the other hand, suppose that y centralizes $a b$, the other element of V^{*}. We set $a^{\prime}=a b$ so a^{\prime} inverts x, as x does and y centralizes x. As a^{\prime} is assumed to centralize y, we see that if we replace a by a^{\prime} then we again have the above symmetrical relations. Hence, we shall assume this is done.

There are now two possibilities to consider: x and y commute or they do not. First, we claim that if x and y do commute then $(a b)^{x y}$ is the desired

[^0]${ }^{1}$ Supported in part by a National Science Foundation grant.

[^0]: Received February 9, 1970.

