REMARKS ON STRONGLY M-PROJECTIVE MODULES

BY

PAUL E. BLAND

In [11], Varadarajan introduced the notion of strongly *M*-projective modules. He showed that every $B \in Mod R$ satisfying $B\mathcal{A}(M) = 0$ possesses a strong *M*-projective cover if and only if $R/\mathcal{A}(M)$ is a right perfect ring where $\mathcal{A}(M)$ denotes the right annihilator of *M* in *R*. We show that if a certain class of modules in Mod *R* is closed under factors, then every $B \in Mod R$ possesses a strong *M*-projective cover if and only if $R/\mathcal{A}(M)$ is right perfect, thereby conditionally extending Varadarajan's result to Mod *R*. We also show via a pullback diagram that $B \in Mod R$ is strongly *M*-projective if and only if $B/B\mathcal{A}(M)$ is a projective $R/\mathcal{A}(M)$ -module. Varadarajan has shown this for the special case when $\mathcal{A}(M) = 0$.

If M is injective and $(\mathcal{T}, \mathcal{F})$ is the hereditary torsion theory on Mod R cogenerated by M, then it is shown that $B \in \text{Mod } R$ is codivisible with respect to $(\mathcal{T}, \mathcal{F})$ if and only if B is strongly M-projective. From this it follows that if B has a projective cover, then B is codivisible with respect to $(\mathcal{T}, \mathcal{F})$ if and only if B is M-projective in the sense of G. Azumaya [1].

Throughout this paper R will denote an associative ring with identity and our attention will be confined to the category Mod R of unital right R-modules. We will often abuse notation and write $B \in Mod R$ for an object of Mod R. Furthermore all maps will be morphisms in Mod R while $\mathcal{A}(M)$ and M^J will denote the right annihilator of M in R and the direct product of the family $\{M_a = M\}$ $(a \in J)$ respectively. In addition, M will denote a fixed right R-module which is not necessarily injective.

Following Varadarajan [11], we call $B \in Mod R$ strongly M-projective if every row exact diagram of the form

where J is any indexing set can be completed commutatively. This is a natural generalization of M-projective modules first studied by G. Azumaya [1]. Azumaya called B M-projective if the diagram above can be completed commutatively when J is a singleton.

If K is a submodule of $B \in Mod R$, then K is said to be M-independent in B if for each $0 \neq x \in K$ there is an $f \in Hom_{\mathbb{R}}(B, M)$ such that $f(x) \neq 0$.

© 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 12, 1977.