REMARKS ON STRONGLY M-PROJECTIVE MODULES

BY
Paul E. Bland

In [11], Varadarajan introduced the notion of strongly M-projective modules. He showed that every $B \in \operatorname{Mod} R$ satisfying $B \mathscr{A}(M)=0$ possesses a strong M-projective cover if and only if $R / \mathscr{A}(M)$ is a right perfect ring where $\mathscr{A}(M)$ denotes the right annihilator of M in R. We show that if a certain class of modules in $\operatorname{Mod} R$ is closed under factors, then every $B \in \operatorname{Mod} R$ possesses a strong M-projective cover if and only if $R / \mathscr{A}(M)$ is right perfect, thereby conditionally extending Varadarajan's result to Mod R. We also show via a pullback diagram that $B \in \operatorname{Mod} R$ is strongly M-projective if and only if $B / B \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module. Varadarajan has shown this for the special case when $\mathscr{A}(M)=0$.

If M is injective and $(\mathscr{T}, \mathscr{F})$ is the hereditary torsion theory on $\operatorname{Mod} R$ cogenerated by M, then it is shown that $B \in \operatorname{Mod} R$ is codivisible with respect to (\mathscr{T}, \mathscr{F}) if and only if B is strongly M-projective. From this it follows that if B has a projective cover, then B is codivisible with respect to (\mathscr{T}, \mathscr{F}) if and only if B is M-projective in the sense of G. Azumaya [1].

Throughout this paper R will denote an associative ring with identity and our attention will be confined to the category $\operatorname{Mod} R$ of unital right R-modules. We will often abuse notation and write $B \in \operatorname{Mod} R$ for an object of Mod R. Furthermore all maps will be morphisms in $\operatorname{Mod} R$ while $s \mathcal{Q}(M)$ and M^{J} will denote the right annihilator of M in R and the direct product of the family $\left\{M_{a}=M\right\}(a \in J)$ respectively. In addition, M will denote a fixed right R-module which is not necessarily injective.

Following Varadarajan [11], we call $B \in \operatorname{Mod} R$ strongly M-projective if every row exact diagram of the form

where J is any indexing set can be completed commutatively. This is a natural generalization of M-projective modules first studied by G. Azumaya [1]. Azumaya called B M-projective if the diagram above can be completed commutatively when J is a singleton.

If K is a submodule of $B \in \operatorname{Mod} R$, then K is said to be M-independent in B if for each $0 \neq x \in K$ there is an $f \in \operatorname{Hom}_{R}(B, M)$ such that $f(x) \neq 0$.

