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REMARKS ON STRONGLY M-PROJECTIVE MODULES

BY

PAUL E. BLAND

In [11], Varadarajan introduced the notion of strongly M-projective
modules. He showed that every B Mod R satisfying Bsg(M)- 0 possesses
a strong M-projective cover if and only if R/sg(M) is a right perfect ring
where M(M) denotes the right annihilator of M in R. We show that if a
certain class of modules in Mod R is closed under factors, then every
B 6 Mod R possesses a strong M-projective cover if and only if R/sg(M) is
right perfect, thereby conditionally extending Varadarajan’s result to
Mod R. We also show via a pullback diagram that B 6 Mod R is strongly
M-projective if and only if B/B(M) is a projective R/sg(M)-module.
Varadarajan has shown this for the special case when sO(M)= 0.

If M is injective and (if, ) is the hereditary torsion theory on Mod R
cogenerated by M, then it is shown that B 6Mod R is codivisible with
respect to (-, g) if and only if B is strongly M-projective. From this it
follows that if B has a projective cover, then B is codivisible with respect to
(, ) if and only if B is M-projective in the sense of G. Azumaya [1].
Throughout this paper R will denote an associative ring with identity and

our attention will be confined to the category Mod R of unital right
R-modules. We will often abuse notation and write B Mod R for an
object of Mod R. Furthermore all maps will be morphisms in Mod R while
.(M) and MJ will denote the right annihilator of M in R and the direct
product of the family {Ma M} (a J) respectively. In addition, M will
denote a fixed right R-module which is not necessarily injective.

Following Varadarajan [11], we call B Mod R strongly M-projective if
every row exact diagram of the form

.B

,0

where J is any indexing set can be completed commutatively. This is a
natural generalization of M-projective modules first studied by G. Azumaya
[1]. Azumaya called B M-projective if the diagram above can be completed
commutatively when J is a singleton.

If K is a submodule of B Mod R, then K is said to be M-independent in
B if for each 0xK there is an fHomr(B,M) such that f(x)O.
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