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1. Introduction

Let G be a finite group and let K be a field of characteristic p > 0. We
shall assume that all KG-modules are finitely generated and hence have
finite K-dimensions. A KG-module M is periodic if there exists an exact
sequence

(1.1)

of KG-modules such that Po Pn-1 are projective. The period of M is
the least length n of any such sequence.
We prove in this paper that if G is an abelian p-group and if M is an

indecomposable periodic KG-module, then there is a subgroup H of G such
that G/H is cyclic and the restriction of M to a KH-module is free. This
implies that the period of M is at most 2. For any finite group G, the
dimension of a periodic KG-module is divisible by pr-1 where r is the
p-rank of G. That is, the maximal elementary abelian p-subgroup of G has
order pr. These results answer some questions raised by Alperin in [1].
The author wishes to thank E. C. Dade for help with the proofs of

Theorem 5.3 and Corollary 5.4. Some of the results of this paper, particu-
larly Corollary 5.6, have also been proved, using different techniques, by
Eisenbud in [8].

2. Notation and preliminaries

Throughout this paper G denotes a finite group and K is a field of
characteristic p >0. The radical of KG is denoted Rad KG. If H is a
subgroup of G and M is a KG-module, then Mr is the restriction of M to a
KH-module. The socle of M, Soc (M), is the sum of the minimal sub-
modules of M. If G is a p-group, then

Soc(M)={mM Ixm=m for all xG}.

Let H=,H h KG, and let I(G)= K denote the trivial one-dimensional
KG-module. The symbol U(KG) denotes the group of units in KG.
For any KG-module M there exists a projective module F and an

epimorphism q" F-- M. Let I)(M) be the direct sum of the nonprojective
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