SINGULAR MEASURES AND TENSOR ALGEBRAS

BY

SADAHIRO SAEKI

Let X and Y be two compact (Hausdorff) spaces, and let

$$V = V(X, Y) = C(X) \otimes C(Y)$$

be the tensor algebra over X and Y [8]. We denote by V^{\sim} the space of all $f \in C(X \times Y)$ for which there exists a sequence (f_n) in V such that $f_n \to f$ uniformly and $\sup_n ||f_n||_V < \infty$. Then V^{\sim} forms a Banach algebra with norm $||f_n||_{V^{\sim}} = \inf \sup_n ||f_n||_V$, where the infimum is taken over all sequences (f_n) as above (cf. [9] and [10]). The algebra V^{\sim} is often called the tilde algebra associated with V. Notice that the natural imbedding of V into V^{\sim} is an isometric homomorphism (cf. Theorem 4.5 of [5]).

For infinite compact spaces X and Y, C. C. Graham [1] constructs a function $f \in V^{\sim} \setminus V$ such that $f^n \in V$ for all $n \ge 2$. In the present note, we shall prove that a natural analog of Theorem 2.4 of [7] holds for V. Let r be a natural number and let E be a subset of Z'_+ . As in [7], we shall say that E is *dominative* if (a) it contains all the unit vectors $(1, 0, \ldots, 0), \ldots, (0, \ldots, 0, 1)$ and (b) whenever $(m_j) \in \mathbb{Z}_+^r, (n_j) \in E$, and $m_j \leq n_j$ for all indices j, then $(m_j) \in E$.

THEOREM. Let X and Y be two infinite compact spaces, and let E be a dominative subset of \mathbb{Z}_{+}^{r} . Then there exist functions f_{1}, \ldots, f_{r} in V^{\sim} such that

- (a) $f_1^{m_1} \cdots f_r^{m_r} \notin V$ if $(m_j) \in E \setminus \{0\}$, (b) $f_1^{n_1} \cdots f_r^{n_r} \in V$ if $(n_j) \in \mathbb{Z}_+^r \setminus E$.

In order to prove this, let Γ be a locally compact abelian group with dual G. We denote by $A(\Gamma) = M_a(G)^{\wedge}$ the Fourier algebra of $\Gamma(cf. [3] \text{ and } [4])$.

LEMMA 1. Let Γ be an infinite locally compact abelian group, let F be a finite dominative set in \mathbb{Z}_{+}^{r} , and let $\eta > 0$. Then there exist $f_{1}, \ldots, f_{r} \in A(\Gamma)$ such that

- $\|f_j\|_{A(\Gamma)} < 3$ and $\|f_j\|_{\infty} < \eta$ for all indices j, (i)
- $\begin{aligned} \|f_{1}^{m_{1}}\cdots f_{r}^{m_{r}}\|_{\mathcal{A}(\Gamma)} &> 1 \text{ if } (m_{j}) \in F \setminus \{0\}, \\ \|f_{1}^{n_{1}}\cdots f_{r}^{n_{r}}\|_{\mathcal{A}(\Gamma)} &< \eta \text{ if } (n_{j}) \in \mathbb{Z}_{+}^{r} \setminus F. \end{aligned}$ (ii)
- (iii)

Proof. We may assume that $\eta < 1$. We first deal with the case where Γ is discrete or, equivalently, G is compact (and infinite). By Theorem 2.4 of [7], there exist probability measures μ_1, \ldots, μ_r in M(G) such that the measure

Received November 1, 1978.

^{© 1981} by the Board of Trustees of the University of Illinois Manufactured in the United States of America