ALEXANDER MODULES OF SUBLINKS AND AN INVARIANT OF CLASSICAL LINK CONCORDANCE

BY
Nobuyuki Sato
\section*{Introduction}

A link in S^{3} is an ordered collection $L=\left\{K_{1}, \ldots, K_{m}\right\}$ of smooth, oriented, pair-wise disjoint knotted circles in the 3-dimensional sphere. To any link, one may associate the complement $X=S^{3}-\bigcup_{i=1}^{m} N\left(K_{i}\right)$, where $N\left(K_{i}\right)$ denotes an open tubular neighborhood of K_{i} in S^{3}. The Alexander modules of L are the homology groups of the universal abelian cover \tilde{X} of X, viewed as modules over the integral group ring Λ of the group of covering transformations. By Alexander duality, this group is the free abelian group on m generators, so we may identify Λ with the Laurent polynomial ring

$$
\mathbf{Z}\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, \ldots, x_{m}^{-1}\right] .
$$

We begin by studying the relation between the Alexander modules of a link

$$
L=\left\{K_{1}, \ldots, K_{m}\right\}
$$

in S^{3} and those of a sublink $L^{\prime}=\left\{K_{2}, \ldots, K_{m}\right\}$. The first result is the discovery of certain short exact sequences which express this relationship (see Theorem 1.1). An interesting corollary of this result is a new proof of a well-known formula of Torres [12] which related the Alexander polynomial of L to that of L^{\prime}, one which does not use the free differential calculus. The proof of the formula turns out to carry other important information as well. Investigation of a certain map (which is always zero in the cases of interest for the proof of the formula) leads to the discovery of a new link invariant $I_{1}(L)$ which detects non-boundarylinking. In many instances this invariant is quite easy to compute; in fact, in the examples in Section 3, it is far easier to compute than the Alexander polynomial. The proof of the fact that $I_{1}(L)$ vanishes for boundary links (Theorem 3.1) indicates that $I_{1}(L)$ is related to a certain rank invariant $r(L)$ which we define in Section 4. This invariant turns out to be an invariant of link concordance (Theorem 4.4). An application of $r(L)$ to the Whitehead link shows that it is not concordant to a boundary link, and therefore not a slice link. Finally, we show how $I_{1}(L)$ and $r(L)$ are related, and note that this implies that the examples of Section 3 are not concordant to boundary links.

The results of the first two sections are revisions of a chapter of my Ph.D. thesis, Brandeis University 1978. I wish to thank my advisor, Jerome Levine,

Received October 19, 1979.

