BOUNDED SOLUTIONS OF SCALAR, ALMOST PERIODIC LINEAR EQUATIONS

BY

RUSSELL JOHNSON

1. Introduction

Consider a scalar, non-homogeneous differential equation

$$\dot{x} = a(t)x + b(t),$$

where a and b are Bohr-almost periodic functions. If the mean value of a is not zero, then Cameron [3] showed that (*) admits a unique bounded solution, and that said solution is almost periodic. One can now prove this result by observing that (*) has an exponential dichotomy, and appealing to general theorems (e.g., [5] or [13]). If a has mean value zero, and if $\int_0^t a(s) ds$ is bounded (and hence a.p. by Bohr's theorem), then it is easy to prove that one solution of (*) is bounded if and only if all solutions are almost periodic.

Our interest is in the case when a has mean value zero, but $\int_{0}^{t} a(s) ds$ is unbounded. The example of [12] (which uses that of [4]) shows that (*) may then admit bounded solutions, but *no* almost periodic solutions. Stating our results requires the introduction of the hull Ω of the function f(t) = (a(t), b(t))(see 2.3). The space Ω may be given the structure of a compact, abelian topological group [14]. Let μ_0 be normalized Haar measure on Ω . Let Ω_{β} be the set of $\omega \in \Omega$ for which the equation (*) $_{\omega}$ defined by ω (see 3.1) admits a unique bounded solution. Let

 $\Omega_{\alpha} = \{ \omega \in \Omega : \text{ the equation } (*)_{\omega} \text{ admits an almost automorphic solution} \}$

(almost automorphy generalizes almost periodicity; see 2.5 and [18]). It turns out that $\Omega_{\beta} \subset \Omega_{\alpha}$.

We prove the following: (i) Ω_{α} and Ω_{β} are residual subsets of Ω (3.10), and (ii) for "most" functions a, $\mu_0(\Omega_{\beta}) = 1$ (3.11). An example shows that (iii) $\mu_0(\Omega_{\beta})$ may be zero (3.12). We also show that (iv) the example of [12] satisfies $\mu_0(\Omega_{\alpha}) = 1$ (3.14–3.16). Finally, (v) we indicate how altering the example of [12] might produce an example with $\mu_0(\Omega_{\alpha}) = 0$ (3.17). It should be noted that (i) is proved in the more general case when Ω is minimal (2.1).

We also consider the case when (*) admits *no* bounded solutions. Assuming that Ω is minimal, we show in 4.2 that residually many $\omega \in \Omega$ have the property

Received January 5, 1980.

^{© 1981} by the Board of Trustees of the University of Illinois Manufactured in the United States of America