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1. A considerable amount of effort has been expended in recent years on
generalizing Kodaira’s Embedding Theorem to a characterization of
Moishezon spaces by some form of positive coherent sheaves. There are two
possible approaches. One is to consider a relatively weak form of positivity;
the problem is then to prove that a complex space carrying such a sheaf is
necessarily Moishezon. The other is to give a stronger definition of positivity
and then the problem is to show that every Moishezon space carries such a
sheaf (see the bibliography in [8]).
One of the first and most natural positivity notions for sheaves was

given by Grauert in his fundamental paper "Uber Modifikationen und
exceptionelle analytische Mengen" ([4]). Let X be a reduced compact complex
space and --, X a coherent analytic sheaf. Grauert constructs a linear fibre
space V() dual to such that is the sheaf of linear forms on V(S"). He then
calls ’ weakly positive if the zero-section of V() is exceptional, that is, can be
holomorphically contracted to a point. The main theorem of [41 is that a
normal compact complex space is projective, and hence by Chow’s theorem,
projective algebraic, if and only if it carries a weakly positive locally-free sheaf.
In light of this result, it seems quite natural to try to characterize Moishezon
spaces by weakly positive coherent sheaves. Now it is a simple matter to prove
that if X carries a weakly positive coherent sheaf then X is Moishezon (see
[8]). The difficulty lies in showing that every Moishezon space carries such a
sheaf.

In [81, I gave a slightly weaker definition of positivity than Grauert’s. Let X,
if’, and V() be as above. The V(’) is, in general, non-reduced and its reduction
is, in general, not irreducible. Let Va be the reduction of V() and let :
Va X be the natural projection. Then there is an analytic set A X such
that r: VI(X-A)X-A is a vector bundle (see [10]). The primary
component of V(), denoted V’, is the closure in Va of VaIX- A. If X is
irreducible, then V’ is the unique irreducible component of Vs which is
mapped onto X by r. Although V’ is, in general, not a linear fibre space, it
does have a well-defined zero-section and is called primary weakly positive if
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