A RATIO ERGODIC THEOREM FOR GROUPS OF MEASURE-PRESERVING TRANSFORMATIONS

BY

MARIA E. BECKER

Introduction

In this paper we use the method introduced in ergodic theory by A. P. Calderón [1] combined with a covering lemma due to Besicovich to obtain the pointwise convergence of averages formed with *n*-parameter groups of measure-preserving transformations.

Let (X, \mathcal{A}, μ) be a σ -finite measure space. By an *n*-parameter group of measure-preserving transformations we mean a system of mappings $(\theta_t, t \in \mathbb{R}^n)$ of X into itself having the following properties:

- (i) $\theta_t(\theta_s x) = \theta_{t+s} x$; $\theta_0 x = x$ for every t and s in \mathbb{R}^n and every x in X.
- (ii) for every measurable subset E of X, $\theta_t(E)$ is measurable and its measure equals the measure of E, for any t in \mathbb{R}^n .

(iii) For any function f measurable on X, the function $f(\theta_t x)$ is measurable on the product space $\mathbb{R}^n \times X$, where the euclidean space \mathbb{R}^n is endowed with Lebesgue measure.

Let p be a non-negative function in $L^{1}(\mu)$. For each function f integrable over X, we consider the ratios

$$R_{\alpha}(f, p)(x) = \frac{\int_{B_{\alpha}} f(\theta_t x) dt}{\int_{B_{\alpha}} p(\theta_t x) dt} \quad \text{if } \int_{B_{\alpha}} p(\theta_t x) dt > 0,$$

 $R_{\alpha}(f, p)(x) = 0$ otherwise, where B_{α} is the ball in \mathbb{R}^{n} of radius α and center at the origin.

In what follows we give sufficient conditions for the almost everywhere convergence of $R_{\alpha}(f, p)$, as $\alpha \to \infty$, in the set where the denominators eventually become positive and therefore it arises a continuous version of the Chacon and Ornstein theorem [2].

If f is integrable over X, we denote $\int_X f d\mu$ by $\int f(x)dx$.

© 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 23, 1981.