HANKEL OPERATORS IN VON-NEUMANN-SCHATTEN CLASSES

BY

FINBARR HOLLAND AND DAVID WALSH

Introduction

In [3], Bonsall reduced the study of a Hankel operator on the Hardy space H^2 of the disc D to the study of its action on a class of simple elements in H^2 which generate the space. To this end he introduced the unit vectors

$$v_z(w) = rac{\sqrt{1 - |z|^2}}{1 - \bar{z}w} \quad (w \in D)$$

indexed by the points $z \in D$ and proceeded to show that A is a bounded Hankel operator if and only if $\{||Av_z||: z \in D\}$ is bounded. His methods also show that A is compact if and only if $||Av_z|| \to 0$ uniformly as $|z| \to 1$.

The purpose of this paper is to try to find conditions which relate the quantities $||Av_z||$ with the property that A belongs to the von Neumann-Schatten class $\mathscr{C}_p(1 \le p < \infty)$. We get a complete characterization only when p = 2. For other values of p we obtain implications in one direction only but are able to show that the converse implications do not hold.

Bonsall also considered unit vectors $u_n(\zeta)$, $n \ge 0$, $\zeta \in \partial D$, the counterparts of the v_z on the unit circle. We obtain completely analogous conditions in terms of $||Au_n(\zeta)||$ as stated above for $||Av_z||$ including a necessary condition that $A \in \mathscr{C}_1$. Again the condition is shown to be not sufficient.

Preliminaries

We record some notation we will use and recall some pertinent results. Let D denote the unit disc, ∂D the unit circle, $L^p = L^p(\partial D)$ the usual Lebesgue space, $0 , and <math>H^p$, Hardy space, the subspace of L^p of functions analytic in D.

Let $\hat{f}(n)$ be the *n*th Fourier coefficient of the function f in L^1 . We will follow the usual practice of identifying a function f in H^p with its analytic extension to D, $\sum_{n=0}^{\infty} \hat{f}(n) z^n$.

Received April 21, 1986

^{© 1988} by the Board of Trustees of the University of Illinois Manufactured in the United States of America