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Introduction

Let X c n be a real algebraic set, and let (X) denote the ring of
polynomial functions on X. Recall that a subset S c X is called semialge-
braic if there exist polynomials fij, gi (X) such that

p

S U {x .g’. fil(X) > 0, gi(x) 0}.
i=1

As is well known, if S is open the gi’s in this expression can be omitted.
Recall also that an open semialgebraic set is called basic open if furthermore
p 1. These basic open sets have attracted a lot of interest in recent times,
till the proof of the beautiful theorem that states that a basic open set S has
always a description

s x. > 0,..., > 0}

with s < dim(x); see [Br2,3, 4], [Sch], [Mh], [AnBrRzl]. However, the prob-
lem of understanding when a given semialgebraic set is basic open and, in
that case, how many inequalities are needed to generate it, is far from solved.
An immediate remark is that if S is basic open, then S
where stands for the euclidean closure, and -z for the Zariski closure.
The only full characterization available is due to Br6cker and Scheiderer. To
state it properly, let us say that a semialgebraic set S is s-basic if there are s
polynomials fl,..., f (X) such that S {fl > 0,..., f > 0}, and that
S is generically s-basic if it is s-basic up to codimension 1, that is, there are s
polynomials fl,..., f .(X) and a nowhere dense algebraic subset Z X
such that

s\z {f, > 0,...,L > o} \z.
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