APPROXIMATE VERSIONS OF CAUCHY'S FUNCTIONAL EQUATION

J. RALPH ALEXANDER, CHARLES E. BLAIR AND LEE A. RUBEL¹

1. Introduction

Ulam [U, page 63] raised the general problem of when a mathematical entity which nearly meets certain requirements must be close, in some sense, to one which does meet the requirements. A particular case is a result of Hyers [H]: if

$$|f(x+y) - f(x) - f(y)| < \varepsilon$$
 for all $x, y, y \in [x, y]$

then there is a g satisfying Cauchy's equation with $|f(x) - g(x)| < \varepsilon$ for all x. A survey of related results appears in [HR].

In this note, we look at stronger assumptions ([H] did not even assume f was measurable) that imply $f(x) = \gamma x$ almost everywhere (we will use Lebesgue measure, denoted by μ , throughout). Our main results are:

THEOREM 1. Let f, a, b be measurable functions and let

(1)
$$\delta(x, y) \equiv f(x+y) - a(x) - b(y).$$

If there is a $J \in \mathbf{R}$ such that, for every $\varepsilon > 0$,

(2)
$$\mu(\{(x, y) | |\delta(x, y) - J| \ge \varepsilon\})$$

is finite, then, for some γ and β , $f(x) = \gamma x + \beta$ almost everywhere.

Remarks

1. It is easy to see that, if f = a = b and J = 0, then $\beta = 0$.

The referee points out that the case f = a = b and $J \neq 0$ is related to Pexider's equation f(x + y) = f(x) + f(y) + K.

2. For any p > 0, $\delta \in L^{p}(\mathbb{R}^{2})$ implies that δ satisfies (2) with J = 0.

3. It can also be shown that, for some $\beta', \gamma', a(x) = \gamma' x + \beta'$ almost everywhere (the same argument applies to b(x) by symmetry): replace f by

Received January 8, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 39A15; Secondary 39A20.

¹Partially supported by a grant from the National Science Foundation.

^{© 1995} by the Board of Trustees of the University of Illinois Manufactured in the United States of America