APPROXIMATE VERSIONS OF CAUCHY'S FUNCTIONAL EQUATION

J. Ralph Alexander, Charles E. Blair and Lee A. Rubel ${ }^{1}$

1. Introduction

Ulam [U, page 63] raised the general problem of when a mathematical entity which nearly meets certain requirements must be close, in some sense, to one which does meet the requirements. A particular case is a result of Hyers [H]: if

$$
|f(x+y)-f(x)-f(y)|<\varepsilon \quad \text { for all } x, y
$$

then there is a g satisfying Cauchy's equation with $|f(x)-g(x)|<\varepsilon$ for all x. A survey of related results appears in [HR].

In this note, we look at stronger assumptions ([H] did not even assume f was measurable) that imply $f(x)=\gamma x$ almost everywhere (we will use Lebesgue measure, denoted by μ, throughout). Our main results are:

Theorem 1. Let f, a, b be measurable functions and let

$$
\begin{equation*}
\delta(x, y) \equiv f(x+y)-a(x)-b(y) . \tag{1}
\end{equation*}
$$

If there is $a J \in \mathbf{R}$ such that, for every $\varepsilon>0$,

$$
\begin{equation*}
\mu(\{(x, y)||\delta(x, y)-J| \geq \varepsilon\}) \tag{2}
\end{equation*}
$$

is finite, then, for some γ and $\beta, f(x)=\gamma x+\beta$ almost everywhere.

Remarks

1. It is easy to see that, if $f=a=b$ and $J=0$, then $\beta=0$.

The referee points out that the case $f=a=b$ and $J \neq 0$ is related to Pexider's equation $f(x+y)=f(x)+f(y)+K$.
2. For any $p>0, \delta \in L^{p}\left(R^{2}\right)$ implies that δ satisfies (2) with $J=0$.
3. It can also be shown that, for some $\beta^{\prime}, \gamma^{\prime}, a(x)=\gamma^{\prime} x+\beta^{\prime}$ almost everywhere (the same argument applies to $b(x)$ by symmetry): replace f by

Received January 8, 1993.
1991 Mathematics Subject Classification. Primary 39A15; Secondary 39A20.
${ }^{1}$ Partially supported by a grant from the National Science Foundation.

