DISTRIBUTION OF FUNCTIONS IN ABSTRACT H¹

FLORENCE LANCIEN

I. Introduction

Let A be a weak*-Dirichlet algebra i.e. a subalgebra A of $L^{\infty}(\mu)$ where (\mathcal{M}, μ) is a probability space such that: μ is multiplicative on A, A contains the constants and $A + \overline{A}$ is weak*-dense in $L^{\infty}(\mu)$.

The abstract Hardy spaces are defined by the following:

 $\mathscr{H}^{p}(\mathscr{M})$ is the closure of A in $L^{p}(\mu)$, for $1 \leq p < \infty$, $\mathscr{H}^{\infty}(\mathscr{M})$ is the weak*-closure of A in $L^{\infty}(\mu)$.

We also denote by $\mathscr{H}_0^1(\mathscr{M})$ the set of functions in $\mathscr{H}^1(\mathscr{M})$ with $\int_{\mathscr{M}} f d\mu = 0$ and by $\operatorname{Re}\mathscr{H}^1(\mathscr{M})$ the set of real parts of functions in $\mathscr{H}^1(\mathscr{M})$.

These algebras were introduced in [SW], where it was proven that the corresponding abstract Hardy spaces enjoy most of the measure theoretic properties of the original Hardy spaces. Then in [HR] the conjugate function was studied for these weak*-Dirichlet algebras. The conjugation operator is defined for 1 by

$$\mathscr{H}: L^{p}(\mu) \to L^{p}(\mu)$$
$$f \mapsto \tilde{f} \text{ such that } f + i\tilde{f} \in \mathscr{H}^{p}(\mathscr{M}) \text{ and } \int_{\mathscr{M}} \tilde{f} d\mu = 0.$$

This operator is bounded on $L^p(\mu)$, 1 . For <math>p = 1, \mathscr{H} is only bounded from $L^1(\mu)$ into $L^{1,\infty}(\mu)$. So a natural question is to characterize the functions in $L^1(\mu)$ for which \tilde{f} is in $L^1(\mu)$. This is the problem we will investigate here. Note that if $f \ge 0$, Zygmund's theorem (which holds for weak*-Dirichlet algebras, see [HR]) asserts that the condition for \tilde{f} to be in $L^1(\mu)$ is that f is in $L \log_+ L$ (i.e., $\int_{\mathscr{H}} |f| \log_+(|f|) d\mu < \infty$).

We will first recall the solution of the problem for the classical Hardy spaces. It was solved on \mathbf{T}, \mathbb{R} and \mathbb{R}^n by B. Davis [Da], here is his result for $H^1(\mathbb{R})$. For f a real valued function on \mathbb{R} , let f_δ be the signed decreasing function (i.e., non-positive and not increasing on $(-\infty, 0)$, non-negative and not increasing on $(0, \infty)$) which has the same distribution as f and let $M(t) = \int_{-t}^{t} f_{\delta}(u) du$.

Received November 2, 1992

¹⁹⁹¹ Mathematics Subject Classification. Primary 46J10; Secondary 43A17.

^{© 1995} by the Board of Trustees of the University of Illinois Manufactured in the United States of America