RESTRICTION THEOREMS RELATED TO ATOMS

DASHAN FAN

Introduction

Let \mathbb{R}^n be *n*-dimensional real Euclidean space and let S^{n-1} be the unit sphere in \mathbb{R}^n . Suppose that $d\sigma = d\sigma(x')$ is the element of Lebesgue measure on S^{n-1} so that the measure of S^{n-1} is 1. If $d\mu = \psi d\sigma$ is a measure with smooth density ψ , then from [9] or [10] we know that the Fourier transform of $d\mu$ satisfies $d\hat{\mu}(\xi) = O(|\xi|^{-\varepsilon})$ as $|\xi| \to \infty$, for some $\varepsilon > 0$. It turns out that if the density ψ is merely in $L^p(d\sigma)$, for some p > 1, then there is still an average decrease of $d\hat{\mu}$ at infinity along any ray emanating from the origin. More precisely, suppose that ψ is in $L^p(d\sigma)$, then

(*)
$$R^{-1}\int_{O}^{R}|d\hat{\mu}(\rho\xi)|^{2}d\rho \leq A(R|\xi|)^{-\varepsilon},$$

where $\varepsilon < (1 - p^{-1})/2$, and A is a positive constant independent of $R|\xi|$ (see [10]). The estimate (*) has the following application.

Let $\Omega(x)|x|^{-n}$ be a homogeneous function of degree -n, with $\Omega \in L^p(S^{n-1})$, for some p > 1, and $\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0$. Let $r \to b(r)$ be a bounded function on $(0, \infty)$. We consider the distribution $K = P.V.b(|x|)\Omega(x)|x|^{-n}$ and study the boundedness of the operator Tf which is defined by Tf = f * K. This operator was studied extensively and its boundedness properties were established in R. Fefferman [7], Namazi [8], Duoandikoetxea and Rubio de Francia [4] and Chen [1]. In his new significant book [9], by using (*), E. M. Stein gives an alternative proof to conclude that, under the restriction $n \ge 2$, the mapping $f \to f * K$ extends to a bounded operator in $L^2(\mathbb{R}^n)$. Meanwhile, he points out that the condition $b \in L^{\infty}(0, \infty)$ can be replaced by a weaker condition (see pages 372–373 in [10]; also see [4]):

(1)
$$R^{-1} \int_{O}^{R} |b(\rho)|^{2} d\rho \leq A \text{ for all } R > 0.$$

In this paper, we shall study $d\mu = \psi d\sigma$ where the density ψ is an atom. As an application, we will prove that if $\Omega(x')$ is merely in the Hardy space $H^1(S^{n-1})$ with mean zero property and if, for some p > 1, the radial function b(|x|) satisfies

(1')
$$R^{-1} \int_0^R |b(\rho)|^p \, d\rho \le A \text{ for all } R > O,$$

Received October 8, 1993

1991 Mathematics Subject Classification. Primary 42B10, 42B20, 42B30; Secondary 42B99.

© 1996 by the Board of Trustees of the University of Illinois Manufactured in the United States of America