HANKEL OPERATORS ON COMPLEX ELLIPSOIDS

F. SYMESAK

1. Introduction

For $\left(b_{k}\right)$ in $\ell^{2}=\ell^{2}(\mathbb{C})$, the Hankel matrix $H=\left(h_{k, l}\right)$ is the infinite matrix of which k, l entry is b_{k+l} which may be seen as an operator on ℓ^{2}. As it is well known [21], such an operator can be realized as an operator on $H^{2}(D)$ where D is the unit disc of $\mathbb{C}: H^{2}(D)$ identifies with ℓ^{2} if $\left(b_{k}\right) \in \ell^{2}$ is identified with $\sum_{k} b_{k} z^{k}$. So, let $b(z)=\sum_{k} b_{k} z^{k}$. Given f in $H^{2}(D)$, the Hankel operator h is defined by

$$
\begin{equation*}
h f=S(b \bar{f}) \tag{1.1}
\end{equation*}
$$

where S is the Szegö projection. Since the family $\left(z^{k}\right)$ is an orthonormal basis of $H^{2}(D)$, the matrix H and the operator h (see [28]) satisfy

$$
\left(h\left(z^{k}\right) / z^{l}\right)=\frac{1}{2 i \pi} \int_{T} b(z) \bar{z}^{k+l} \frac{d z}{z}=b_{k+l}=h_{k, l} .
$$

Hankel operators have been studied by many authors. They showed how the properties of the operator or its matrix depend on the symbol b. In 1957, Z. Nehari [19] showed that h is bounded if and only if b belongs to $B M O$ and, in 1958, P. Hartman [11] proved that h is a compact operator if and only if b belongs to VMO. In 1979, V. V. Peller [20] proved that h is of the Schatten class $\mathcal{S}_{p}, 1 \leq p<+\infty$ if and only if b is in the Besov space $B_{p}^{p, 1 / p}(D)$. An independent proof was given in 1980 by R. Coifman and R. Rochberg [5] for $p=1$ and R. Rochberg extended it for $p \geq 1$ [22]. We follow their method.

Let $n \geq 2$ and let $\rho_{k}=\rho_{k_{1}, k_{2}, \ldots, k_{n}}$ be a sequence of positive real numbers. For b_{k} in the weighted space $\ell^{2}\left(\mathbb{C}^{n},\left(\rho_{k}\right)\right)$, the generalized Hankel matrix $H=\left(h_{k, l}\right)$, $(k, l)=\left(\left(k_{1}, \ldots, k_{n}\right),\left(l_{1}, \ldots, l_{n}\right)\right)$, is the matrix with entries

$$
h_{k, l}=b_{k+l} \rho_{k+l} .
$$

Let $\rho_{k}=\rho_{k_{1}, k_{2}, \ldots, k_{n}}=1$. We denote by P^{n} the polydisc in \mathbb{C}^{n} and by ∂P^{n} its boundary. The family $e_{k}(z)=z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}$ is an orthonornal family of $H^{2}\left(P^{n}\right)$. Let $b(z)=\sum_{k} b_{k} e_{k}(z)$. The function b is in the Hardy space $H^{2}\left(P^{n}\right)$ and, again, we can define the Hankel operator h on $H^{2}\left(P^{n}\right)$ by the relation (1.1). Then we have

$$
\left(h\left(e_{k}\right) / e_{l}\right)=\frac{1}{2 \pi^{n}} \int_{\partial P n} b(\zeta) e_{k}(\zeta) \bar{e}_{l}(\zeta) d \zeta_{1} \cdots d \zeta_{n}=b_{k+l}
$$

