HANKEL OPERATORS ON COMPLEX ELLIPSOIDS

F. SYMESAK

1. Introduction

For (b_k) in $\ell^2 = \ell^2(\mathbb{C})$, the Hankel matrix $H = (h_{k,l})$ is the infinite matrix of which k, l entry is b_{k+l} which may be seen as an operator on ℓ^2 . As it is well known [21], such an operator can be realized as an operator on $H^2(D)$ where D is the unit disc of \mathbb{C} : $H^2(D)$ identifies with ℓ^2 if $(b_k) \in \ell^2$ is identified with $\sum_k b_k z^k$. So, let $b(z) = \sum_k b_k z^k$. Given f in $H^2(D)$, the Hankel operator h is defined by

$$hf = S(b\overline{f}), \tag{1.1}$$

where S is the Szegö projection. Since the family (z^k) is an orthonormal basis of $H^2(D)$, the matrix H and the operator h (see [28]) satisfy

$$(h(z^k)/z^l) = \frac{1}{2i\pi} \int_T b(z) \overline{z}^{k+l} \frac{dz}{z} = b_{k+l} = h_{k,l}.$$

Hankel operators have been studied by many authors. They showed how the properties of the operator or its matrix depend on the symbol b. In 1957, Z. Nehari [19] showed that h is bounded if and only if b belongs to BMO and, in 1958, P. Hartman [11] proved that h is a compact operator if and only if b belongs to VMO. In 1979, V. V. Peller [20] proved that h is of the Schatten class S_p , $1 \le p < +\infty$ if and only if b is in the Besov space $B_p^{p,1/p}(D)$. An independent proof was given in 1980 by R. Coifman and R. Rochberg [5] for p = 1 and R. Rochberg extended it for $p \ge 1$ [22]. We follow their method.

Let $n \geq 2$ and let $\rho_k = \rho_{k_1,k_2,\dots,k_n}$ be a sequence of positive real numbers. For b_k in the weighted space $\ell^2(\mathbb{C}^n,(\rho_k))$, the generalized Hankel matrix $H=(h_{k,l})$, $(k,l)=((k_1,\dots,k_n),(l_1,\dots,l_n))$, is the matrix with entries

$$h_{k,l} = b_{k+l} \, \rho_{k+l}$$
.

Let $\rho_k = \rho_{k_1,k_2,...,k_n} = 1$. We denote by P^n the polydisc in \mathbb{C}^n and by ∂P^n its boundary. The family $e_k(z) = z_1^{k_1} \cdots z_n^{k_n}$ is an orthonornal family of $H^2(P^n)$. Let $b(z) = \sum_k b_k e_k(z)$. The function b is in the Hardy space $H^2(P^n)$ and, again, we can define the Hankel operator h on $H^2(P^n)$ by the relation (1.1). Then we have

$$(h(e_k)/e_l) = \frac{1}{2\pi^n} \int_{\partial P^n} b(\zeta) e_k(\zeta) \overline{e}_l(\zeta) d\zeta_1 \cdots d\zeta_n = b_{k+l},$$

Received August 28, 1995.

1991 Mathematics Subject Classification. Primary 47B35, 47B10, 46E20, 32F15.