A NORM INEQUALITY FOR A "FINITE-SECTION" WIENER-HOPF EQUATION

BY
GLEN BAXTER¹

1. Introduction

We are concerned here with establishing a norm inequality for an equation which arises in a variety of interesting problems. This seemingly simple inequality has a surprisingly large number of applications which we have brought to the reader's attention in §3.

The result concerns the equation

(1.1)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(\theta) f(\theta) e^{-ik\theta} d\theta = g_k \qquad (0 \le k \le n),$$

where $f(\theta)$ is a sufficiently nice function, and where $h(\theta)$ is a polynomial of degree n in $e^{i\theta}$. The purpose is to relate the "size" of $h(\theta)$ to the "size" of $g(\theta) = \sum_{k=0}^{n} g_k e^{ik\theta}$. In particular, we find a norm inequality

where $\|\cdot\|$ denotes the sum of the absolute values of the coefficients in the polynomials $h(\theta)$ and $g(\theta)$, and where the constant M is independent of the particular $g(\theta)$ and $h(\theta)$ involved. Such an inequality allows one to consider the convergence of a sequence of h's in terms of the corresponding sequence of g's.

Before stating the main result, let us generalize the norm used. Let $\nu(n) \geq 1$ be a function of the integer n such that $\nu(n) \leq \nu(m) \nu(n-m)$ for every n, m. Denote by \mathfrak{C}_{ν} the class of functions $F(\theta)$ integrable over $-\pi \leq \theta \leq \pi$ with Fourier coefficients F_k such that

(1.3)
$$|| F ||_{\nu} \equiv \sum_{-\infty}^{\infty} \nu(n) |F_n| < \infty.$$

Next, let us restrict the class of functions $f(\theta)$ considered in (1.1). Let $f(\theta)$ be integrable over $-\pi \leq \theta \leq \pi$ with Fourier coefficients c_k , let $D_n(f) = \det(c_{i-j})$ $(i, j = 0, 1, \dots, n)$, and let $f(\theta)$ satisfy $\log f(\theta) \in \mathcal{C}_{\nu}$. In terms of the notation just introduced, equation (1.1) can be written

$$\begin{pmatrix} c_0 & c_{-1} & \cdots & c_{-n} \\ c_1 & c_0 & \cdots & c_{-n+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n-1} & \cdots & c_0 \end{pmatrix} \begin{pmatrix} h_0 \\ h_1 \\ \vdots \\ h_n \end{pmatrix} = \begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_n \end{pmatrix}.$$

Received October 5, 1961.

¹ This work was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command.