THE SIGN OF THE GAUSSIAN SUM

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY
L. J. Mordell

It is well known and easily proved that if p is an odd prime, then

$$
\begin{equation*}
\sum_{s=0}^{p-1} e^{2 \pi i_{s}{ }^{2} / p}=c \sqrt{ } p \tag{1}
\end{equation*}
$$

where $c= \pm 1$ if $p \equiv 1(\bmod 4)$ and $c= \pm i$ if $p \equiv 3(\bmod 4)$. (See, for example, the remark on Theorem 212 in Landau's Vorlesungen über Zahlentheorie.) As Gauss noted many years ago, it is a much more difficult matter to show that the plus sign must be taken in both cases. A proof originating from Kronecker is given by Hasse in his Vorlesungen über Zahlentheorie (pp. 449-452). It may be worthwhile to give a proof not very dissimilar from this but perhaps a trifle simpler and more self-contained.

Write

$$
\zeta=e^{2 \pi i / p}, \quad P=\zeta-1
$$

Then from the identity

$$
x^{p-1}+x^{p-2}+\cdots+x+1=\prod_{n=1}^{p-1}\left(x-\zeta^{n}\right)
$$

and the equalities

$$
\begin{aligned}
& \left(1-\zeta^{n}\right) /(1-\zeta)=1+\zeta+\zeta^{2}+\cdots+\zeta^{n-1} \\
& (1-\zeta) /\left(1-\zeta^{n}\right)=1+\zeta^{n}+\zeta^{2 n}+\cdots+\zeta^{(m-1) n}
\end{aligned}
$$

where $m n \equiv 1(\bmod p)$, we have

$$
\begin{equation*}
p=\prod_{n=1}^{p-1}\left(1-\zeta^{n}\right)=\varepsilon P^{p-1} \tag{2}
\end{equation*}
$$

where ε is a unit. We prove further that

$$
\begin{equation*}
\sqrt{ } p=\prod_{n=1}^{(p-1) / 2}\{2 \sin (2 n \pi / p)\} \tag{3}
\end{equation*}
$$

In fact from the identity

$$
x^{p-1}+x^{p-2}+\cdots+x+1=\prod_{n=1}^{(p-1) / 2}\left(x-\zeta^{2 n}\right)\left(x-\zeta^{-2 n}\right)
$$

we have

$$
\begin{aligned}
p & =\prod_{n=1}^{(p-1) / 2}\left(1-\zeta^{2 n}\right)\left(1-\zeta^{-2 n}\right) \\
& =\prod_{n=1}^{(p-1) / 2}\left(\zeta^{-n}-\zeta^{n}\right)\left(\zeta^{n}-\zeta^{-n}\right) \\
& =\prod_{n=1}^{(p-1) / 2}\{2 \sin (2 n \pi / p)\}^{2},
\end{aligned}
$$

from which (3) follows, since each sine is positive.

[^0]
[^0]: Received June 1, 1961.

