THE STRUCTURE OF UNITARY AND ORTHOGONAL QUATERNION MATRICES

BY
N. A. Wiegmann

1. Introduction

It is known that a normal quaternion matrix (and hence a unitary quaternion matrix) is unitarily similar to a diagonal matrix with complex elements [2]. It is also known that a quaternion matrix is unitarily equivalent to a diagonal matrix with nonnegative real elements [4]. Also, the transpose of a unitary quaternion matrix is not necessarily unitary; a necessary and sufficient condition that the transpose, V^{T}, of a unitary quaternion matrix V be unitary is that there exist real orthogonal matrices U and W such that $U V W=$ D is a diagonal quaternion matrix [5].

In the present work two theorems are obtained concerning the structure of unitary and orthogonal quaternion matrices, respectively. An orthogonal quaternion matrix, P, is defined to be a matrix such that $P P^{T}=I\left(=P^{T} P\right)$, where P^{T} denotes the transpose of P. In each case the essential "quaternion character" of the matrix is clearly revealed by the form obtained; and in the unitary case the form obtained gives more meaning to the above quoted theorem concerning the transpose of a unitary matrix.

2. The structure of a unitary matrix

The following theorem will be obtained:
Theorem 1. Every quaternion unitary matrix P can be written in the form $P=U D W$, where U and W are complex unitary matrices and D is a quaternion diagonal unitary matrix; conversely, every matrix of this form is a quaternion unitary matrix.

Let $P=P_{1}+j P_{2}$ (where P_{1} and P_{2} have complex elements) be a unitary quaternion matrix. Then, since $P P^{C T}=I=P^{C T} P \quad\left(P^{C T}=P_{1}^{C T}-j P_{2}^{T}\right.$ denotes the quaternion-conjugate transpose of P), the following hold:

$$
\begin{aligned}
& P_{1} P_{1}^{C T}+P_{2}^{C} P_{2}^{T}=I=P_{1}^{C T} P_{1}+P_{2}^{C T} P_{2} \\
& P_{2} P_{1}^{C T}-P_{1}^{C} P_{2}^{T}=0=P_{1}^{T} P_{2}-P_{2}^{T} P_{1}
\end{aligned}
$$

By a known theorem [1] for the complex matrix P_{1} there exist two complex unitary matrices U_{1} and W_{1} such that $U_{1} P_{1} W_{1}=D$ is a real diagonal matrix with nonnegative elements along the diagonal. There is no loss in generality in assuming that like diagonal elements are arranged together so that $D=D_{1} \dot{+} D_{2} \dot{+}+D_{k}$ where $D_{i}=c_{i} I_{i}$ where c_{i} is nonnegative and real,

[^0]
[^0]: Received June 26, 1957.

