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0. Introduction. Suppose X is a finite-type scheme over a field k, with struc-
tural morphism rr. Consider the twisted inverse image functor re!" Dc+ (k) Dc+(X)
of Grothendieck duality theory (see [Hall). The residue complex :’Jc is defined
to be the Cousin complex of zr!k. It is a bounded complex of quasi-coherent 60x-
modules, possessing remarkable functorial properties. In this paper we provide
an explicit construction of Jc. This construction reveals some new properties of
o:jc and also has applications in other areas of algebraic geometry.

Grothendieck duality, as developed by Hartshorne in [Hall, is an abstract
theory, stated in the language of derived categories. Even though this abstraction
is suitable for many important applications, one often wants more explicit infor-
mation. Thus, a significant amount of work was directed at finding a presenta-
tion of duality in terms of differential forms and residues. Mostly, the focus was
on the dualizing sheaf COx, in various circumstances. The structure of COx as a
coherent (gx-module and its variance properties are thoroughly understood by
now, thanks to an extended effort including [K1], [KW], [Li], [HK1], [HK2],
[LS], and [HS]. Regarding an explicit presentation of the full duality theory of
dualizing complexes, there have been some advances in recent years, notably in
the papers [Yell, [SY], [Hu], [Hg], and [Sa].

In this paper we give a totally new construction of the residue complex
when k is a perfect field of any characteristic and X is any finite-type k-scheme.
The main idea is the use of Beilinson completion algebras (BCAs), introduced in
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